Resources


Database Credentialed Access

DrugEHRQA: A Question Answering Dataset on Structured and Unstructured Electronic Health Records For Medicine Related Queries

Jayetri Bardhan, Anthony Colas, Kirk Roberts, Daisy Zhe Wang

DrugEHRQA is a QA dataset containing question-answers from MIMIC-III tables and discharge summaries.

question-answer qa

Published: April 12, 2022. Version: 1.0.0


Database Credentialed Access

DrugEHRQA: A Question Answering Dataset on Structured and Unstructured Electronic Health Records For Medicine Related Queries

Jayetri Bardhan, Anthony Colas, Kirk Roberts, Daisy Zhe Wang

DrugEHRQA is a QA dataset containing question-answers from MIMIC-III tables and discharge summaries.

question-answer qa

Published: April 12, 2022. Version: 1.0.0


Database Credentialed Access

EHRXQA: A Multi-Modal Question Answering Dataset for Electronic Health Records with Chest X-ray Images

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei JI, Eric Chang, Tackeun Kim, Edward Choi

We present EHRXQA, the first multi-modal EHR QA dataset combining structured patient records with aligned chest X-ray images. EHRXQA contains a comprehensive set of QA pairs covering image-related, table-related, and image+table-related questions.

question answering benchmark evaluation visual question answering electronic health records multi-modal question answering deep learning chest x-ray ehr question answering semantic parsing machine learning

Published: July 23, 2024. Version: 1.0.0


Database Credentialed Access

EHRXQA: A Multi-Modal Question Answering Dataset for Electronic Health Records with Chest X-ray Images

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei JI, Eric Chang, Tackeun Kim, Edward Choi

We present EHRXQA, the first multi-modal EHR QA dataset combining structured patient records with aligned chest X-ray images. EHRXQA contains a comprehensive set of QA pairs covering image-related, table-related, and image+table-related questions.

question answering benchmark evaluation visual question answering electronic health records multi-modal question answering deep learning chest x-ray ehr question answering semantic parsing machine learning

Published: July 23, 2024. Version: 1.0.0


Database Credentialed Access

EHRXQA: A Multi-Modal Question Answering Dataset for Electronic Health Records with Chest X-ray Images

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei JI, Eric Chang, Tackeun Kim, Edward Choi

We present EHRXQA, the first multi-modal EHR QA dataset combining structured patient records with aligned chest X-ray images. EHRXQA contains a comprehensive set of QA pairs covering image-related, table-related, and image+table-related questions.

question answering benchmark evaluation visual question answering electronic health records multi-modal question answering deep learning chest x-ray ehr question answering semantic parsing machine learning

Published: July 23, 2024. Version: 1.0.0


Database Credentialed Access

EHRXQA: A Multi-Modal Question Answering Dataset for Electronic Health Records with Chest X-ray Images

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei JI, Eric Chang, Tackeun Kim, Edward Choi

We present EHRXQA, the first multi-modal EHR QA dataset combining structured patient records with aligned chest X-ray images. EHRXQA contains a comprehensive set of QA pairs covering image-related, table-related, and image+table-related questions.

question answering benchmark evaluation visual question answering electronic health records multi-modal question answering deep learning chest x-ray ehr question answering semantic parsing machine learning

Published: July 23, 2024. Version: 1.0.0


Database Credentialed Access

MIMIC-Ext-MIMIC-CXR-VQA: A Complex, Diverse, And Large-Scale Visual Question Answering Dataset for Chest X-ray Images

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei JI, Eric Chang, Tackeun Kim, Edward Choi

We introduce MIMIC-Ext-MIMIC-CXR-VQA, a complex, diverse, and large-scale dataset designed for Visual Question Answering (VQA) tasks within the medical domain, focusing primarily on chest radiographs.

question answering multimodal benchmark radiology evaluation visual question answering electronic health records deep learning chest x-ray machine learning

Published: July 19, 2024. Version: 1.0.0


Database Credentialed Access

MIMIC-Ext-MIMIC-CXR-VQA: A Complex, Diverse, And Large-Scale Visual Question Answering Dataset for Chest X-ray Images

Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei JI, Eric Chang, Tackeun Kim, Edward Choi

We introduce MIMIC-Ext-MIMIC-CXR-VQA, a complex, diverse, and large-scale dataset designed for Visual Question Answering (VQA) tasks within the medical domain, focusing primarily on chest radiographs.

question answering multimodal benchmark radiology evaluation visual question answering electronic health records deep learning chest x-ray machine learning

Published: July 19, 2024. Version: 1.0.0


Database Credentialed Access

Learning to Ask Like a Physician: a Discharge Summary Clinical Questions (DiSCQ) Dataset

Eric Lehman

Dataset of questions asked by medical experts about patients. Medical experts will read a discharge summary line-by-line and (1) ask any question that they may have and (2) record what in the text "triggered" them to ask their question.

question generation question answering machine learning

Published: July 28, 2022. Version: 1.0


Database Credentialed Access

Learning to Ask Like a Physician: a Discharge Summary Clinical Questions (DiSCQ) Dataset

Eric Lehman

Dataset of questions asked by medical experts about patients. Medical experts will read a discharge summary line-by-line and (1) ask any question that they may have and (2) record what in the text "triggered" them to ask their question.

question generation question answering machine learning

Published: July 28, 2022. Version: 1.0