Resources


Database Contributor Review

COVID Data for Shared Learning (CDSL): A comprehensive, multimodal COVID-19 dataset from HM Hospitales

Álvaro Ritoré, Andreea M Oprescu, Alberto Estirado Bronchalo, Miguel Ángel Armengol de la Hoz

COVID Data for Shared Learning (CDSL) is a multimodal database comprising de-identified structured health data and radiological images from 4,479 patients with COVID-19, as a comprehensive toolkit for developing predictive models.

covid-19 multimodal database radiological images open data healthcare data machine learning and ai

Published: Oct. 25, 2024. Version: 1.0.0


Database Credentialed Access

ReXPref-Prior: A MIMIC-CXR Preference Dataset for Reducing Hallucinated Prior Exams in Radiology Report Generation

Oishi Banerjee, Hong-Yu Zhou, Subathra Adithan, Stephen Kwak, Kay Wu, Pranav Rajpurkar

We propose ReXPref-Prior, an adapted version of MIMIC-CXR where GPT-4 has removed references to prior exams from both findings and impression sections of chest X-ray reports.

chest x-rays reinforcement learning hallucination

Published: Aug. 14, 2024. Version: 1.0.0


Database Credentialed Access

RaDialog Instruct Dataset

Chantal Pellegrini, Ege Özsoy, Benjamin Busam, Nassir Navab, Matthias Keicher

Image-based instruct data for Chest X-Ray understanding and analysis.

medical image understaning radiology chatbot radiology report generation radiology assistant large vision-language models

Published: July 12, 2024. Version: 1.1.0


Model Credentialed Access

Medical AI Research Foundations: A repository of medical foundation models

Shekoofeh Azizi, Jan Freyberg, Laura Culp, Patricia MacWilliams, Sara Mahdavi, Vivek Natarajan, Alan Karthikesalingam

Medical AI Research Foundations is a repository of medical foundation models.

Published: April 25, 2023. Version: 1.0.0


Database Credentialed Access

RadVLM Instruction Dataset

Nicolas Deperrois, Hidetoshi Matsuo, Samuel Ruiperez-Campillo, Moritz Vandenhirtz, Sonia Laguna, Alain Ryser, Koji Fujimoto, Mizuho Nishio, Thomas Sutter, Julia Vogt, Jonas Kluckert, Thomas Frauenfelder, Christian Bluethgen, Farhad Nooralahzadeh, Michael Krauthammer

This dataset is designed to construct RadVLM, a vision–language model for chest X-ray interpretation. It includes instruction data for tasks such as report generation, abnormality detection, and region grounding, and multitask conversation.

chest x-rays vision-language models medical ai

Published: Sept. 25, 2025. Version: 1.0.0


Database Credentialed Access

RadGraph2: Tracking Findings Over Time in Radiology Reports

Adam Dejl, Sameer Khanna, Patricia Therese Pile, Kibo Yoon, Steven QH Truong, Hanh Duong, Agustina Saenz, Pranav Rajpurkar

RadGraph2 is a dataset of 800 chest radiology reports annotated using a fine-grained entity-relationship schema, which captures key findings as well as mentions of changes that occurred in comparison with the previous radiology studies.

chest x-rays relation extraction disease progression information extraction radiology reports named entity recognition

Published: Aug. 8, 2024. Version: 1.0.0


Database Credentialed Access

RadVLM Instruction Dataset

Nicolas Deperrois, Hidetoshi Matsuo, Samuel Ruiperez-Campillo, Moritz Vandenhirtz, Sonia Laguna, Alain Ryser, Koji Fujimoto, Mizuho Nishio, Thomas Sutter, Julia Vogt, Jonas Kluckert, Thomas Frauenfelder, Christian Bluethgen, Farhad Nooralahzadeh, Michael Krauthammer

This dataset is designed to construct RadVLM, a vision–language model for chest X-ray interpretation. It includes instruction data for tasks such as report generation, abnormality detection, and region grounding, and multitask conversation.

chest x-rays vision-language models medical ai

Published: Sept. 25, 2025. Version: 1.0.0


Database Credentialed Access

RadGraph2: Tracking Findings Over Time in Radiology Reports

Adam Dejl, Sameer Khanna, Patricia Therese Pile, Kibo Yoon, Steven QH Truong, Hanh Duong, Agustina Saenz, Pranav Rajpurkar

RadGraph2 is a dataset of 800 chest radiology reports annotated using a fine-grained entity-relationship schema, which captures key findings as well as mentions of changes that occurred in comparison with the previous radiology studies.

chest x-rays relation extraction disease progression information extraction radiology reports named entity recognition

Published: Aug. 8, 2024. Version: 1.0.0