Resources


Database Credentialed Access

MIMIC-Ext-CXR-QBA: A Structured, Tagged, and Localized Visual Question Answering Dataset with Question-Box-Answer Triplets and Scene Graphs for Chest X-ray Images

Philip Müller, Friederike Jungmann, Georgios Kaissis, Daniel Rueckert

We present a large-scale CXR VQA dataset derived from MIMIC-CXR with 42M QA pairs, featuring hierarchical answers, bounding boxes, and structured tags. We generated QA-pairs using LLM-based extraction from radiology reports and localization models.

chest x-rays vqa localization scene graphs

Published: July 22, 2025. Version: 1.0.0


Database Credentialed Access

LLaVA-Rad MIMIC-CXR Annotations

Juan Manuel Zambrano Chaves, Shih-Cheng Huang, Yanbo Xu, Hanwen Xu, Naoto Usuyama, Sheng Zhang, Fei Wang, Yujia Xie, Mahmoud Khademi, Ziyi Yang, Hany Awadalla, Julia Gong, Houdong Hu, Jianwei Yang, Chunyuan Li, Jianfeng Gao, Yu Gu, Cliff Wong, Mu-Hsin Wei, Tristan Naumann, Muhao Chen, Matthew Lungren, Akshay Chaudhari, Serena Yeung, Curtis Langlotz, Sheng Wang, Hoifung Poon

This dataset provides GPT-4 extracted sections of radiology reports from MIMIC-CXR, complementing rule-based section extractions with additional reports with findings, and removing references to priors from findings.

Published: Jan. 24, 2025. Version: 1.0.0


Database Credentialed Access

CHIFIR: Cytology and Histopathology Invasive Fungal Infection Reports

Vlada Rozova, Anna Khanina, Jasmine Teng, Joanne Teh, Leon Worth, Monica Slavin, karin thursky, Karin Verspoor

A corpus of cytology and histopathology reports annotated for terminology relevant to fungal infections. Ideal for validation of named entity recognition and relation extraction methods.

nlp clinical documentation information extraction invasive fungal infections

Published: Feb. 20, 2024. Version: 1.0.2


Database Restricted Access

CheXchoNet: A Chest Radiograph Dataset with Gold Standard Echocardiography Labels

Pierre Elias, Shreyas Bhave

Early detection of heart failure is vital for improving outcomes. The dataset contains 71,589 CXRs paired with gold standard labels from echocardiograms to enable the training of models to detect pathologies indicative of early stage heart failure.

chest x-rays heart failure early detection cardiac structural abnormalties deep learning

Published: March 20, 2024. Version: 1.0.0


Model Credentialed Access

RadVLM model

Nicolas Deperrois, Hidetoshi Matsuo, Samuel Ruiperez-Campillo, Moritz Vandenhirtz, Sonia Laguna, Alain Ryser, Koji Fujimoto, Mizuho Nishio, Thomas Sutter, Julia Vogt, Jonas Kluckert, Thomas Frauenfelder, Christian Bluethgen, Farhad Nooralahzadeh, Michael Krauthammer

RadVLM is a 7B-parameter vision-language model fine-tuned on public chest-X-ray data that drafts reports, lists abnormalities, grounds findings, and chats about a CXR through a single image-to-text interface.

Published: Oct. 8, 2025. Version: 1.0.0


Database Credentialed Access

MS-CXR-T: Learning to Exploit Temporal Structure for Biomedical Vision-Language Processing

Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Max Ilse, Daniel Coelho de Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anton Schwaighofer, Maria Teodora Wetscherek, Hannah Richardson, Tristan Naumann, Javier Alvarez Valle, Ozan Oktay

The MS-CXR-T is a multimodal benchmark that enhances the MIMIC-CXR v2 dataset by including expert-verified annotations. Its goal is to evaluate biomedical visual-language processing models in terms of temporal semantics extracted from image and text.

disease progression cxr vision-language processing chest x-ray radiology multimodal

Published: March 17, 2023. Version: 1.0.0


Database Credentialed Access

MS-CXR-T: Learning to Exploit Temporal Structure for Biomedical Vision-Language Processing

Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Max Ilse, Daniel Coelho de Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anton Schwaighofer, Maria Teodora Wetscherek, Hannah Richardson, Tristan Naumann, Javier Alvarez Valle, Ozan Oktay

The MS-CXR-T is a multimodal benchmark that enhances the MIMIC-CXR v2 dataset by including expert-verified annotations. Its goal is to evaluate biomedical visual-language processing models in terms of temporal semantics extracted from image and text.

disease progression cxr vision-language processing chest x-ray radiology multimodal

Published: March 17, 2023. Version: 1.0.0


Database Credentialed Access

Chest ImaGenome Dataset

Joy Wu, Nkechinyere Agu, Ismini Lourentzou, Arjun Sharma, Joseph Paguio, Jasper Seth Yao, Edward Christopher Dee, William Mitchell, Satyananda Kashyap, Andrea Giovannini, Leo Anthony Celi, Tanveer Syeda-Mahmood, Mehdi Moradi

The Chest ImaGenome dataset is a scene graph dataset with additional chronological comparison relations for chest X-rays. It is automatically derived from the MIMIC-CXR dataset. A manually annotated gold standard is also available for 500 patients.

scene graph visual dialogue object detection semantic reasoning bounding box knowledge graph explainability reasoning relation extraction chest disease progression cxr chest x-ray radiology machine learning multimodal deep learning visual question answering

Published: July 13, 2021. Version: 1.0.0


Database Credentialed Access

Chest ImaGenome Dataset

Joy Wu, Nkechinyere Agu, Ismini Lourentzou, Arjun Sharma, Joseph Paguio, Jasper Seth Yao, Edward Christopher Dee, William Mitchell, Satyananda Kashyap, Andrea Giovannini, Leo Anthony Celi, Tanveer Syeda-Mahmood, Mehdi Moradi

The Chest ImaGenome dataset is a scene graph dataset with additional chronological comparison relations for chest X-rays. It is automatically derived from the MIMIC-CXR dataset. A manually annotated gold standard is also available for 500 patients.

scene graph visual dialogue object detection semantic reasoning bounding box knowledge graph explainability reasoning relation extraction chest disease progression cxr chest x-ray radiology machine learning multimodal deep learning visual question answering

Published: July 13, 2021. Version: 1.0.0