Software Open Access
Measurement of Global Electrical Heterogeneity
Muammar Kabir , Erick Andres Perez Alday , kazi haq , Jonathan Waks , Larisa Tereshchenko
Published: May 2, 2018. Version: 1.0.0
New Software: GEH (May 2, 2018, midnight)
These software scripts calculate Global Electrical Heterogeneity scores of ecg signals, which characterize the degree of heterogeneity of the total recovery time across the ventricles.
Please include the standard citation for PhysioNet:
(show more options)
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
Background
The Global Electrical Heterogeneity (GEH) concept is based on the theory of Wilson’s electrical gradient vector, which characterizes the degree of heterogeneity of the total recovery time across the ventricles.
The larger the degree of heterogeneity of total recovery time across the ventricles, the larger the spatial ventricular gradient (SVG) magnitude. The SVG vector points towards the area where the total recovery time is shortest. SVG vector points the direction along which non-uniformities in excitation and repolarization are the greatest (i.e., it is perpendicular to the line of conduction block). Experimental and theoretical investigations demonstrated that the SVG is related to global heterogeneity of both action potential duration and morphology.
The concept underlying the SVG was extended to the spatial QRS-T angle, the three-dimensional angle between the QRS- and T-vectors and the sum absolute QRST integral (SAI QRST), a scalar analog of the SVG calculated as the absolute value of the area under the QRS complex and T-wave on the X, Y, and Z leads. The scalar value of SVG can also be calculated as a QT integral on Vector Magnitude signal (iVMQT), as an area under the Vector Magnitude signal curve from the QRS-onset to T-offset. Five GEH metrics (SVG magnitude, elevation, and azimuth, spatial QRS-T angle, and SAI QRST (or QT integral on Vector Magnitude signal, iVMQT) are complementary to each other; all together they characterize global electrophysiological properties of the heart. GEH is independently associated with sudden cardiac death. GEH can be measured on routinely used clinical 12-lead ECG, after its transformation into orthogonal (Frank) XYZ ECG. We recommend using Kors transformation.
Software Description and Usage
This page contains V.1 of the software. The working repository for this is hosted in the following github page: https://github.com/Tereshchenkolab/Global-Electrical-Heterogeneity.
One test file 90757.mat
is provided for GEH calculation testing, with a sampling rate 500 Hz and amplitude resolution 1 µV. A raw 12-lead ECG file 12LECG.mat
is provided to illustrate the Kors transformation from 12-lead to XYZ (Frank) ECG.
For a demonstration, load 12LECG.mat
and run Kors_git.m
, then load 90757.mat
and run GEH_analysis_git.m
Access
Access Policy:
Anyone can access the files, as long as they conform to the terms of the specified license.
License (for files):
Open Data Commons Attribution License v1.0
Discovery
Corresponding Author
Files
Total uncompressed size: 0 B.
Access the files
-
Download the files using your terminal:
wget -r -N -c -np https://physionet.org/files/geh/1.0.0/
-
Download the files using AWS command line tools:
aws s3 sync --no-sign-request s3://physionet-open/geh/1.0.0/ DESTINATION
Name | Size | Modified |
---|---|---|
12LECG.mat (download) | 109.2 KB | 2019-04-12 |
90757.mat (download) | 12.4 KB | 2019-04-12 |
GEH calculation.pdf (download) | 266.7 KB | 2019-04-12 |
GEH_analysis_git.m (download) | 22.6 KB | 2019-04-12 |
Kors_git.m (download) | 2.3 KB | 2019-04-12 |
LICENSE (download) | 1.0 KB | 2019-04-12 |
README.md (download) | 1.5 KB | 2019-04-12 |