
CVSim GUI Developer’s Guide

Catherine Dunn

August 28, 2007

1 Acknowledgments

This implementation of CVSim is the work of Catherine Dunn with support
by Thomas Heldt and contributions from Brandon Pierquet and Ali Saeed.

Previous implementations were written by Bob Sah (1983), George Moody
(1985), Tim Davis (1989), Rama Mukkamala (2001), Thomas Heldt (2002),
and by Eun Bo Shim and his students (2003). The circulatory model used in
CVSim was created by Roger Mark, based on an analog model of JG Defares
and colleagues. The CVSim model was elaborated by Thomas Heldt, Eun
Bo Shim, Roger Kamm, and Roger Mark.

Development of CVSim was funded by the National Aeronautics and Space
Administration (NASA) through the NASA Cooperative Agreement NCC
9-58 with the National Space Biomedical Research Institute.

2 Running CVSim via Java Web Start

The easiest way to run CVSim is using a web browser with Java Web Start
installed.

2.1 Supported Platforms

Running CVSim via Java Web Start has been tested on the following plat-
forms:

• Windows XP

1



• Mac OS X PPC

• Mac OS X i386

• Fedora Core 4, 5, and 7

• Red Hat Enterprise Linux 4

Running CVSim via Java Web Start is not supported on the following plat-
forms:

• Solaris

2.2 Installing Java Web Start

In order to run CVSim from a web browser, you need to install Java Web
Start. Java Web Start is part of the Java Runtime Engine (JRE).

If you are using Windows: Follow the instructions on the Sun website to
install JRE 6.

If you are using Linux: Follow the instructions on the Sun website to
install JRE 6. You also need to manually install the Java Plug-in in your
web browser.

If you are using Mac OS X: Run Software Update from the System Pref-
erences. Install Java for Mac OS X 10.4, Release 5.

The first time you run CVSim , you will see a security warning that asks
you, “The application’s digital signature cannot be verified. Do you want to
run the application”. Click “Run”. If you want to avoid that warning in the
future, check the “Always trust content from this publisher” box. If you are
using Internet Explorer, the security warning may be displayed behind your
browser.

3 Building CVSim from the Source Code

3.1 System Requirements

In order to build CVSim, you need to have the following software installed:

2

http://java.sun.com/javase/6/webnotes/install/index.html
http://java.sun.com/javase/6/webnotes/install/index.html
http://java.sun.com/javase/6/webnotes/install/jre/manual-plugin-install-linux.html
http://physionet.org/physiotools/cvsim/cvsim_deploy.jnlp


• gcc, version 4.0.2 or higher (See http://gcc.gnu.org)

• Simplified Wrapper Interface Generator (SWIG), version 1.3.29 or higher
(See http://www.swig.org)

• Java 2 Platform Standard Edition, version 5.0 Update 8 or later (See
http://java.sun.com)

• GNU Make, version 3.80 or higher (See http://www.gnu.org/software/make/)

3.2 Obtaining the source code

The CVSim source code is available in a gzipped tar archive from http://physionet.org/physiotools/cvsim/cvsim.tar.gz.
Download this archive, and then unpack it by:

tar xfvz src.tar.gz

This will create a directory named cvsim-NN (where NN is the release
number), containing subdirectories devel (code) and doc (documentation).

3.3 Compiling the Code

If you are using Linux: Navigate to the devel directory. Rename Makefile.include.root.linux
as Makefile.include.root, and edit this file to reflect the location of your
installation of gcc, SWIG, and Java. At the command line, type make.

If you are using Mac OS X: Navigate to the devel directory. Rename
Makefile.include.root.osx as Makefile.include.root, and edit this file
to reflect the location of your installation of gcc, SWIG, and Java. At the
command line, type make.

If you are using Windows: Install and configure cygwin with all the re-
quired packages. Navigate to the devel directory. Rename Makefile.include.root.windows
as Makefile.include.root, and edit this file to reflect your installation of
gcc, SWIG, and Java. At the command line, type make.

3

http://gcc.gnu.org
http://physionet.org/physiotools/cvsim/cvsim.tar.gz


4 Running the Code

To run the code, navigate to the classes directory and type:

java -Djava.library.path=../../lib edu.mit.lcp.CVSim

The -Djava.library.path=../../lib tells Java where to find the native C
libraries. The CVSim class in the edu.mit.lcp package contains the main()

method.

5 The Source Code

5.1 Directory Structure

What follows is a brief tour of the directory structure.

The top level of directories is

devel/ doc/

devel/ is the main line of development. It’s where all the code is. doc/ is
for project documentation, including this guide. In devel/, you will find a
couple Makefiles, a shell script, and the following directories:

C/ java/ lib/ swig/

C/ is for the C code (the model backend), java/ is for the Java code (the
GUI frontend), and swig/ is for the SWIG interface that allows the two to
work together. lib/ is for the native C libraries generated from the C code
and loaded by Java. The Makefiles are for building CVSim on Linux and
Windows. The shell script, osx compile.sh, is for building the application on
Mac OS X. (Using a cross-platform build tool such as Ant might be better
than using a combination of Makefiles and shell scripts. Alas, I did not have
the time to get so fancy.)

Inside the C directory, you will find the source code for the 6-compartment
model (6 comp model) and the 21-compartment model (21 comp model).

4



The java/ dir is organized in the standard way with separate directories
for source and class files (src/ and classes/ respectively) and a subdirec-
tory structure mirroring the package name (edu/mit/lcp). In other words,
the Java source files (*.java) are in src/edu/mit/lcp/ and the class files
(*.class) are in classes/edu/mit/lcp.

5


