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Abstract

This study presents our team PathToMyHeart’s contri-
bution to the George B. Moody PhysioNet Challenge 2022.
Two models are implemented. The first model is a Dual
Bayesian ResNet (DBRes), where each patient’s record-
ing is segmented into overlapping log mel spectrograms.
These undergo two binary classifications: present versus
unknown or absent, and unknown versus present or absent.
The classifications are aggregated to give a patient’s final
classification. The second model is the output of DBRes
integrated with demographic data and signal features us-
ing XGBoost. DBRes achieved our best weighted accuracy
of 0.771 on the hidden test set for murmur classification,
which placed us fourth for the murmur task. (On the clini-
cal outcome task, which we neglected, we scored 17th with
costs of 12637.) On our held-out subset of the training set,
integrating the demographic data and signal features im-
proved DBRes’s accuracy from 0.762 to 0.820. However,
this decreased DBRes’s weighted accuracy from 0.780 to
0.749. Our results demonstrate that log mel spectrograms
are an effective representation of heart sound recordings,
Bayesian networks provide strong supervised classifica-
tion performance, and treating the ternary classification
as two binary classifications increases performance on the
weighted accuracy.

1. Introduction

Congenital heart disease occurs when there are prob-
lems with the early development of the heart’s structure.
The detection of heart murmurs (sounds made by turbu-
lent blood flow through the heart) and other noises with
this technique can indicate structural defects in the heart.
The analysis of signals in early life may therefore provide
a rapid and non-invasive screening test for the presence of
cardiac structural defects, enabling early diagnosis and in-
tervention [1].

In this work, we present our contribution to the heart

murmur classification task from the 2022 George B.
Moody PhysioNet Challenge [2]. The aim was to design an
open-source algorithm to classify the presence, absence, or
unknown cases of heart murmurs from heart sound record-
ings. Our contributions are threefold: (i) we design and
implement two deep learning modelling approaches, one
trained purely on two-dimensional representations of data
(spectrograms) derived from the heart sound recordings,
and a second that additionally utilises a patient’s demo-
graphic data and features derived directly from the sound
recordings; (ii) we compare the relative contribution of dif-
ferent data modalities to heart murmur classification; and
(iii) discuss potential mechanisms and implications for the
observed results.

2. Methodology

2.1. Data

The data provided for this year’s challenge was col-
lected from two screening campaigns in Northeast Brazil
in July/August 2014 and June/July 2015 [3]. The dataset
contains heart sound recordings of length 5 to 45 seconds
(Figure 1), together with demographic data, which consists
of age categories, sex, height, weight, and pregnancy sta-
tus. There are 1568 patients in the dataset, of which 60%
(942) were given to the participants for training. For each
patient, there were up to six heart sound recordings avail-
able, with 5272 recordings in the full dataset and 3163
in the training set. Each recording was taken from one
of these locations: pulmonary valve, aortic valve, mitral
valve, tricuspid valve, or other. Each patient has a heart
murmur label, which can be present, unknown, or absent.

2.2. Scores

The murmur challenge score used to evaluate classifiers
was the weighted accuracy

s =
5cp + 3cu + ca
5tp + 3tu + ta

, (1)
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Figure 1. Histogram of recording lengths with the corre-
sponding murmur label.

where ci is the number of correct classifications and ti is
the total number of cases for present (i = p), unknown
(i = u), and absent (i = a). Models were also compared
locally using the accuracy (cp + cu + ca)/(tp + tu + ta)
and the per class accuracies ci/ti.

2.3. Data preparation

The short-time Fourier transform determines the fre-
quency and phase component of sections of a signal as
it varies over time. This is achieved using a windowed
Fourier transform [4]. Its result is often represented as a
spectrogram. Log mel spectrograms further map the fre-
quency axis to the (logarithmic) mel scale, which aims
to maintain the distance humans perceive between pitches
(cf. Figure 2). This representation has repeatedly shown
success in recent audio classification challenges tasks, ei-
ther as standalone features, or used in combination with
other acoustic features [5, 6].

The audio data was prepared by computing log mel
spectrograms and extracting signal features from the
recordings. The signal features extracted include sum-
mary features in the time and frequency domains, as well
as summary features of the spectral centroid, rolloff and
bandwidth. These features were extracted using the Python
packages SCIPY and LIBROSA.

When calculating the spectrograms, each recording is
divided into overlapping segments using a window of
length 4 seconds and stride of 1 second. For each seg-
ment, individual spectrograms with 64 coefficients are cal-
culated using a Fast Fourier Transform with a periodic
Hanning window of length 25 milliseconds and stride 10
milliseconds. The spectrogram’s minimum and maximum
frequencies were 10 and 2000Hz, respectively.

The demographic data was preprocessed using the ex-
ample code provided by organisers of this year’s Chal-
lenge. This consisted of converting age labels into ap-
proximate ages in months, one hot encoding the sex label,
and converting the pregnancy status into a binary variable.

Missing values are handled using a mean imputation.
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Figure 2. Example heart sound recordings (top row) for
a patient with present murmur recorded at the aortic valve
(left column) and mitral valve (right column). The bottom
row shows the log mel spectrogram, as parameterised in
the code. The dash-dotted lines show how the data was
partitioned into 4 second two-dimensional inputs.

2.4. Models

Bayesian Neural Networks. Bayesian neural networks
provide strong performance for supervised classification
tasks and an estimate of the uncertainty in a classification,
both of which are desirable for real-data tasks such as this
challenge. Additionally, they naturally suit Bayesian de-
cision theory. This benefits decision-making applications
where the associated cost is dependent on the type of incor-
rect decision, such as the weighted accuracy given in (1)
[7]. The core of the audio-based inference is performed
using two Monte Carlo dropout ResNet50 Bayesian neu-
ral networks. ResNet has achieved state-of-the-art perfor-
mance in audio tasks [8] motivating its use as a dependable
baseline model in our study. In order to approximate the
model posterior as test time, dropout layers are added to
the modules BasicBlock() and Bottleneck(), as
well as the overall model construction. The model was
pre-trained on ImageNet and the layers were re-trainable.
For more details see [9, Appendix B.4].

Dual Bayesian ResNet and XGBoost integration.
Figure 3 is a schematic diagram of the data preparation and
two models considered in this paper, the Dual Bayesian
ResNet (DBRes) and the DBRes with demographic data
and signal feature integration via XGBoost. There are
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Figure 3. A schematic diagram of the Dual Bayesian
ResNet (DBRes) and XGBoost integration models. The
blue, purple, and green boxes represent data, models and
classifications, respectively.

three major components to the models: classifying the
individual spectrograms, aggregating these classifications,
and integrating the demographic data and signal features
via XGBoost [10].

The ternary murmur classification is split into two bi-
nary classifications: present versus unknown or absent,
and unknown versus present or absent. Separate Bayesian
ResNet50 networks are trained on the individual spectro-
grams for each of these tasks. During testing, a patient’s
individual spectrograms are simultaneously classified us-
ing both networks.

The individual spectrograms classifications are aggre-
gated by first taking the arithmetic mean of the output from
the present versus unknown or absent ResNet50. If this av-
eraged output classifies the patient’s murmur as present, it
is classified as present. If not, then the arithmetic mean
of the output from the unknown versus present or absent
ResNet50 is taken. If this averaged output classifies the
patient’s murmur as unknown, it is classified as unknown,
else the patient’s murmur is classified as absent. DBRes is
the outcome from this classification aggregation.

This choice of model structure and classification aggre-
gation was chosen to prioritise the accuracy of present clas-
sifications, aligning with the priority in the murmur chal-
lenge score (1).

The second model considered in this paper integrates
the output from the DBRes with the patient’s demographic
data and extracted signal features using XGBoost. This

model is referred to as DBRes with XGBoost integration.

Table 1. Murmur labels by age [n (% of 942)].
Absent Unknown Present Sum

Neonate 4 (0.4) 1 (0.1) 1 (0.1) 6 (0.6)
Infant 76 (8.1) 25 (2.7) 25 (2.7) 126 (13.4)
Child 495 (52.6) 37 (3.9) 132 (14.0) 664 (70.5)
Adolescent 53 (5.6) 3 (0.3) 16 (1.7) 72 (7.6)
Missing 67 (7.1) 2 (0.2) 5 (0.5) 74 (7.9)

Sum 695 (73.8) 68 (7.2) 179 (19.0) 942 (100)

2.5. Code availability

Our code is available on a GitHub repository [11].

3. Results

Preliminary data analysis. The data contain mainly
children and is highly unbalanced, with murmurs being ab-
sent in 74% of patients, present in 19% of patients, and
unknown in 7% of patients, as shown in Table 1.

Models performance. Table 2 provides the per class
accuracy, accuracy, and the murmur challenge score for
DBRes and DBRes with XGBoost integration when eval-
uated on our held-out subset of the training set. DBRes
scored 0.771 (4th place) when evaluating the murmur chal-
lenge score using the PhysioNet hidden test set (cf. Table
3). On the clinical outcome task, which we neglected, we
scored 17th with costs of 12637 (cf. Table 4). The simi-
larity between the murmur challenge score on our held-out
subset of the training set and the PhysioNet hidden test set
demonstrate that the held-out subset of the training set has
been constructed in a sound way to promote model gener-
alisation across datasets.

4. Discussion

Principal findings. In this work we proposed and evalu-
ated two Bayesian deep learning approaches to classifying
murmurs as present, absent, or unknown from heart sound
recordings and demographic data. The first approach,
DBRes, implements two binary Bayesian ResNet50 net-
works, which classify murmurs in segmented spectro-
grams of heart sound recordings. The second approach
combines the output from DBRes with features extracted
from audio signals and patients’ demographic data via XG-
Boost.

The results in Table 2 show that spectrograms are a
good representation of the data, and when combined with
ResNet provide the majority of the predictive power. Fur-
thermore, the integration of demographic data and signal
features improves the accuracy. However, this integration
decreases the weighted accuracy.
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Table 2. Murmur metric scores on held-out subset of the training set for DBRes and DBRes with XGBoost Integration.

Features
Accuracy per Class

Accuracy Murmur
Challenge ScorePresent Unknown Absent

DBRes Spectrograms 0.833 0.615 0.757 0.762 0.780

DBRes with XGBoost Spectrograms, signal features, demographic data 0.750 0.231 0.893 0.820 0.749

Training Validation Test Ranking
0.78 0.768 0.771 4/40

Table 3. Weighted accuracy metric scores for our final se-
lected entry for the murmur detection task. Training score
is on a held-out subset of the public training set, repeated
scoring is used on the hidden validation set, and one-time
scoring is used on the hidden test set.

Training Validation Test Ranking
13023 10411 12637 17/39

Table 4. Cost metric scores for our final selected entry
for the clinical outcome identification task. Training score
is on a held-out subset of the public training set, repeated
scoring is used on the hidden validation set, and one-time
scoring is used on the hidden test set.

Potential mechanisms and implications. The results
demonstrate that the architecture of DBRes prioritises the
accuracy on present, then on unknown, and then on absent
cases, without using a weighted loss function. This is fur-
ther demonstrated in Table 2, as present has the highest per
class accuracy for DBRes. In contrast, the current imple-
mentation of XGBoost integration is not optimised for the
weighted accuracy. Therefore, the accuracy of absent cases
is prioritised, as they comprise the majority of the dataset.
This leads to the observed decrease in the weighted accu-
racy.

Our results demonstrate the viability of a deep neu-
ral network approach to classifying heart murmurs from
heart sound recordings. Given further work to improve the
specificity of murmur classification, these models could
be a component of an algorithmic screening for congen-
ital heart disease.

Future research. A direction of future research is de-
veloping a superior method for integrating patients’ de-
mographic data and signal features with the outputs from
DBRes. This could include adjusting the objective func-
tion of XGBoost to align with the challenge score or in-
vestigating other methods of multimodal data fusion [12].
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