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Abstract 

Congenital heart disease (CHD) is a major cause of 

death for newborns, especially in low resources countries, 

due to limited access to heart specialists for timely 

diagnosis. As part of the George B. Moody PhysioNet 

Challenge 2022,  we propose an automatic algorithm to 

detect CHD murmurs from digitally recorded heart sounds 

annotated by specialists. To train and validate our model, 

we use a dataset with 5282 heart sounds collected from 

1568 children in the Paraiba state of Brazil recorded from 

multiple auscultation locations. Our team, named 

One_Heart_Health, used a two-stage strategy that 

combines embeddings from Mel spectrograms generated 

from audio segments and a final classifier that combine 

those embeddings to deliver the final classification per 

individual. On the official hidden test, we reached a 

weighted accuracy score of 0.729 (ranked 17th out of 40) 

and a challenge cost score of 13283 (ranked 23th out of 

39). In our internal 5-fold cross-validation experiments, 

our approach reached a sensitivity of 0.76 ± 0.10 and a 

specificity of 0.85 ± 0.11. We have shown that a deep 

learning approach for murmur detection has the potential 

to mimic heart specialists to provide timely identification 

of CHD.  

 

1.  Introduction 

Congenital heart disease (CHD) affects about 1% of 

newborns, causing approximately 260,000 death per year 

in 2017, with 87% of them from the low- or middle-income 

countries [1]. While universal newborn screening for 

critical CHD has been adopted in high-income countries, 

many low resources parts of the world continue to struggle 

with timely diagnosis, especially in geographically remote 

areas with limited access to heart specialists. We have 

previously shown that telemedicine by heart specialists can 

accurately detect CHD with an overall accuracy of 91% 

based on digital heart sounds [2]. A promising next step to 

scale auscultation in consistency and reachability while 

maintaining affordability is to develop automatic detection 

of CHD with a machine learning model. The model should 

leverage a large dataset of digital heart sounds and be 

adjudicated by heart specialists or verified by 

echocardiographic diagnoses. In this context, the 2022 

George B Moody PhysioNet Challenge enables the use of 

machine learning by providing a dataset where we can 

identify murmurs and clinical outcomes associated with 

CHD from digital heart sounds collected from a large-scale 

CHD screening program with digital heart sounds of 1568 

children participants and respective expert annotations [3].  

In this work, we leverage a large dataset of labeled heart 

sounds to generate an auscultation-like analysis regarding 

the presence or absence of murmurs. Figure 1 shows our 

 
Figure 1. Mel spectrograms from 2-second audio segments with 

absent and present murmurs. The x-axis in each figure is time, 

the y-axis is frequency, and reddish colors represent high 

intensity. We propose a deep learning approach based on visual 

perception to assist in auscultation for congenital heart disease. 

From left to right, we show how the information flows from data 

multi-site heart sound collection to the final classification of an 

individual.  
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core idea of using Mel spectrograms. It is evident to a 

trained human visual cortex that the top Mel spectrogram 

has clear-spaced and intense low-frequency events on the 

bottom region, an acoustic behavior that we expect from 

normal heartbeats. The Mel spectrogram on the bottom 

part of Figure 1 has additional events that are regular and 

longer on mid-level frequency bands. When heard by a 

specialist, these events can be identified as murmurs. With 

our two-stage deep learning framework, we aim to mimic 

human visual cortex classification and aggregated the 

information for final decision. 

 

1.1.  Related Work 

Heart murmurs have been a key signal for CHD 

diagnosis and the use of automatic computation to detect 

them has been investigated for decades. We can specify 

two main reasons for automation: mass screening, 

especially in places with deficient health care systems and 

the physical limitations, including subjectivity judgment of 

a high-skilled examiner trained for many years [4] . 

The advances in applied artificial intelligence in the last 

decade contributed to the performance of computer models 

to detect pathological heart murmurs with performance 

similar to expert cardiologists [5]. Previously, the 2016 

PhysioNet Challenge [6] also promoted teams to find the 

best algorithm for heart sound classification for general 

heart diseases; but our work in PhysioNet Challenge 2022, 

specifically focused on murmur detection of CHD.  

 

2.  Methodology 

We propose a two-stage strategy. After data collection 

and audio preprocessing, in Stage 1, we deploy a CNN-

based neural network on top of Mel spectrogram segments 

to classify whether a 2-second audio piece contains or not 

a murmur. Then, in Stage 2, we use the model in Stage 1 

as a feature extractor, and from randomly selected pieces 

of participants audios, we develop another model that 

classifies the participant as normal or abnormal. 

 

2.1. Data 

The dataset used in this study was provided during the 

official phase of the 2022 PhysioNet Challenge [7]. It is a 

subset of the data collected by two independent cardiac 

screening campaigns organized to screen a large pediatric 

population in the Northeast region of Brazil [3]. We used 

heart sound recordings ranging from 8 to 312.5 seconds 

from 1,568 participants. These were recorded using a 

Littmann 3200 stethoscope embedded with the DigiScope 

Collector at 4 kHz. Two cardiac physiologists manually 

annotated the beginning and end of each fundamental heart 

sound. The recording locations included aortic, pulmonary, 

tricuspid, and mitral on healthy (normal) and pathological 

(abnormal) subjects, with various congenital heart 

diseases, a single individual was associated with multiple 

audio recordings from one or more locations, and each 

audio was classified on whether a murmur was present, 

absent, or unknown. While preprocessing the files, we 

ignored recordings of locations without a murmur from 

participants that had the murmur identified in another 

audio. To increase the sensitivity of our algorithm, we 

considered all unknown cases as cases of present murmur. 

 

2.2. Audio Preprocessing  

We first processed the audio files (.wav) of all 

participants passing a Butterworth Bandpass filter 

allowing frequency between 20hz and 530hz; most 

pathogenic murmurs were found to be between these 

bands' thresholds. We also normalized the audio samples 

using the Librosa python package. Next, since each 

recording has long audio files of different lengths, we split 

recording into multiple segments of 2 seconds. We chose 

2 seconds to guarantee at least one entire heartbeat cycle in 

each segment. Finally, we generate a Mel spectrogram 

from each 2-second segment, similar to those shown in 

Figure 1. Aiming to mimic human-like performance, we 

chose to work with Mel spectrograms because they are 

audio representations constructed after applying Mel filters 

crafted to enhance frequencies more distinguishable by the 

human auditory system. 

 

2.3.  Stage 1: Murmur Detection Model 

Figure 2 shows the first stage of Maiby’s algorithm. We 

build a convolutional neural network (CNN) model that 

 
Figure 2: In Stage 1, we train a CNN model that classifies 

whether or not a Mel spectrogram contains a murmur. We flatten 

the output of the convolution layers and process it with two fully 

connected layers before making a prediction. In Stage 2, we 

extract features for another classifier by using the second last 

layer with dimension 1x8. 
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receives as input a Mel spectrogram generated during 

preprocessing and outputs in its last layer a single value 

from a sigmoid function that can be interpreted as the 

probability of the segment having a murmur.  

For weight initialization, we leverage the 2016 

PhysioNet Challenge dataset to “warm-up” our Stage 1, 

but without freezing any layers before training with the 

2022 PhysioNet data.  

Since the Stage 1 model only works on a single Mel 

spectrogram, we need to devise a strategy to combine the 

various spectrograms generated for a participant. Our 

approach for this problem is to take advantage of the 

second last layer of the network with an embedding size of 

1x8 and combine them to form the input of our second 

model to generate the final prediction.  

 

2.4.  Stage 2: Final Decision Model 

As shown in Figure 3, from all audio recordings of a 

patient, we randomly sampled 16 2-second audio clips and 

input them into our Stage 1 network to generate the 

embeddings of size 1x8. Next, we randomly concatenated 

16 embeddings to generate an array of size 1x128 to serve 

as input of Stage 2 that will decide whether a participant 

should or not be further screened. Our Stage 2 model is a 

simple feed-forward neural network made of fully 

connected layers with an input size of 1x128, two layers of 

shape 1x16, and a final layer of shape 1x1 that outputs after 

a sigmoid activation the probability of a participant having 

a murmur. Due to the unbalanced nature of the problem, 

we also set the class weight according to the estimated 

value from the scikit-learn Python package.  

  

We do not expect any time dependency between the 

murmur embeddings since they are randomly selected. 

Also, an interesting property, we can repeat the random 

concatenation multiple times for the same patient while 

training leveraging all the embeddings from the annotated 

data from a participant. In our experiments, we generate 4 

arrays of 1x128 for each patient during training. 

For both Stage 1 and Stage 2 models, we set to 1000 the 

maximum epochs to train the models. We used the area 

under the precision-recall curve (AUC-PR) as the metric 

for early stopping with the patience parameter set to 40 

epochs (i.e., the number of epochs without improvement 

until halt training). We trained this network using an Adam 

optimizer with a binary cross-entropy loss function. 

TensorFlow 2.8.2 was used to implement the models. We 

named our approach Maiby’s algorithm and our code is 

available at: https://github.com/maraujo/physionet22/. 

For the cost of the clinical outcome identification task 

in the challenge, we used a vanilla feed-forward neural 

network with 2 layers, each with 8 neurons and a 25% 

dropout rate. The input was a standardized vector with 

participants' demographic information (pregnancy status, 

weight, height, body mass index, gender, and age) 

concatenated with the murmur probability computed by the 

Stage 2 model. 

 

3.  Results 

The weighted accuracy is the official challenge score for 

murmur detection; it is computed by using weights 5, 3, 

and 1 for the accuracies of the present, unknown and absent 

classes, respectively. This metric places more importance 

or weight on participants with murmurs. First, we analysed 

our model in the hidden validation set (10% of the dataset) 

from the Physionet challenge. For comparison, we used a 

baseline model implemented in Python with a random 

forest classifier using participants’ demographic data and 

the mean, variance, and kurtosis of each recording. Our 

weighted accuracy performance reached 0.699 against 

0.394 for the baseline.  

In the official hidden test set (30% of the dataset), our 

model reached for the murmur detection task a weighted 

accuracy performance of 0.729 (17th out of 40), a score 

6.5% lower than the best-ranked team (0.780). For the cost 

of clinical outcome, we reached 13283 (ranked 23th out of 

39).   

Table 1 shows an additional analysis of Maiby’s 

algorithm performance based on a 5-fold cross-validation 

experiment of the training data (283 participants used for 

the test). For the area under the receiver operating 

characteristic curve (AUC-ROC), the mean and confidence 

 
Figure 3: For Stage 2, we train a feed-forward neural network 

that outputs the probability of a participant presenting or not 

murmur. Each participant has multiple embeddings generated by 

each of the 2-second Mel spectrograms. We randomly 

concatenate 16 of these embeddings using the second last layer 

of Stage 1 to generate an input tensor of 1x128 for the Stage 2 

model. Interestingly, we can resample embeddings to generate 

new inputs many times for the same participant since the order 

of concatenation does not matter. 
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interval was 0.72 ± 0.04; for sensitivity, we had 0.76 ± 0.10 

and specificity 0.85 ± 0.11. We observed that our 

performance for weighted accuracy in the hidden test set is 

within the confidence interval from our experiment (0.71 

± 0.05). 
 

4.  Discussion and Conclusion 

The most complex challenge of Maiby’s algorithm 

approach was hyperparameter tuning. We have a large 

number of parameters, each one with ample space to be 

evaluated. This problem ranges from the split proportion 

of the dataset, the size of the murmur embeddings (1x8), 

the number of embeddings as input for Stage 2 (16 

embeddings), number of embeddings resamples per 

participant (4). In addition, we have to find the best deep 

learning architecture, which includes specific parameters 

such as the number of layers, the number of neurons in 

each layer, the type of activation function, use or not 

dropout layers, and normalize or not input. Due to limited 

computing resources and the long training time (3h49min), 

we had a minimal number of randomized parameter search. 

The stochastic concatenation of embeddings in Stage 2 

is another weakness. Consider the case of sampling a 

patient with more than 16 embeddings, meaning that some 

will be left unseen. The final classification will be 

impacted if the embeddings containing murmur are 

unseen.  
 

5.  Conclusion 

The George B. Moody PhysioNet Challenge 2022 

provides a large dataset that motivates the creation 

solutions for the automatic auscultation of congenital heart 

disease. We proposed a two-stage algorithm using a 

convolutional neural network and another feed-forward 

neural network that, when combined, outputs a 

participant’s probability of having a present heart murmur 

in their collected heart sounds. Our approach was only 

6.5% worse than the best team in terms of weighted 

accuracy performance for the murmur classification task. 

We acknowledge that the current algorithm is not as 

accurate as experts in detecting congenital heart disease. 

Still, we demonstrate that automatic auscultation of 

congenital heart disease is possible and has incredible 

potential in low resources areas to improve CHD 

diagnosis. 
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AUC-

ROC 

Weighted 

Accuracy 

True 

Neg. 

False 

Pos. 

False 

Neg. 

True 

Pos. 

Sens. Spec. Fold 

0.70 0.72 193 37 13 40 0.76 0.84 1 

0.70 0.70 155 67 12 49 0.80 0.70 2 

0.78 0.79 201 18 9 55 0.86 0.92 3 

0.73 0.67 209 21 18 35 0.66 0.91 4 

0.71 0.69 192 31 17 43 0.72 0.86 5 

Table 1. Our 5-fold-cross-validation results using the training 

dataset. 
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