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Abstract

The field of automated auscultation has been growing
in popularity in the past decade due to manual ausculta-
tion being a challenging task requiring years of training.
Many efforts in the field focus on achieving high accuracy,
with confident, albeit sometimes wrong, classifiers. Such
model over-confidence is especially dangerous in health-
care setting. Leveraging the release of the new heart sound
dataset as a part of PhysioNet 2022 challenge, we explored
a novel murmur detection methodology using uncertainty-
aware tandem learning. To separate unknown samples and
detect heart sounds with murmur present, we developed
two binary classifiers, under the assumption that training
two models to solve simpler tasks could improve the over-
all sensitivity. First, we used a support vector machine
for identification of unknown samples, followed by a Deep
Neural Network (DNN) for prediction of murmur. In ad-
dition, we implemented uncertainty estimation in DNN us-
ing Monte Carlo dropouts for further eliminating any sam-
ples that should be labelled as unknown. Our team mobi-
health achieved 63% and 69% sensitivity and specificity of
murmur, scoring 0.467 (ranked 34th out of 40) and 11032
(ranked 25th out of 39) on the hidden validation set and
0.374 (ranked 40th out of 40) and 18754 (ranked 39th out
of 39) on the hidden testing set during the challenge for
murmur and outcome prediction tasks, respectively.

1. Introduction

Automated cardiac auscultation could promote preven-
tative healthcare and improve the standard of care: man-
ual auscultation is a challenging task for clinicians and re-
quires years of training.

With the emergence of deep learning, researchers in
academia and industry are actively exploring novel appli-
cations. The main difficulty in achieving deep learning’s
potential in healthcare is a clear lack of high-quality large
datasets. Among body sounds datasets, the field of ma-
chine learning for heart sounds (HSs) is among the most
mature, but even for HSs the vast majority of previous

work is based on only two datasets, released as part of
challenge: The PASCAL Classifying Heart Sounds Chal-
lenge 2011 [1] and The PhysioNet/Computing in Cardiol-
ogy Challenge 2016 [2]. However, both of these datasets
focus on binary classification of HSs. An additional lim-
itation is that the HS samples from the same patient are
treated as separate, independent samples, as if they were
from different patients. Given that the murmur intensity
could vary for various auscultation locations for a single
patient, this misses the opportunity to use multiple sounds
from a single patient for a more accurate diagnosis.

A new dataset [3] was released as a part of Heart Mur-
mur Detection from Phonocardiogram Recordings: The
George B. Moody PhysioNet Challenge 2022 [4], which,
for the first time, addresses some issues with the existing
HS datasets. In addition to the binary labels, it introduces
an unknown label. It also includes a detailed description
of the type of the murmur in the metadata, allowing for a
more detailed analysis of the abnormal HS. Secondly, mul-
tiple HS recordings from different auscultatory locations
are available for a single patient, presenting an opportunity
to leverage this data for more precise diagnostics.

PhysioNet 2022 proposed two tasks for challenge partic-
ipants, and in our work we only focused on the first task,
where the teams were invited to develop a classification al-
gorithm for three classes: murmur present (further referred
to as murmur), murmur absent (further referred to as nor-
mal), and unknown.

Unknown samples could in reality be either normal or
murmur samples, and the misclassification of unknown
samples as normal was heavily penalised by the score sys-
tem. In addition, distinguishing murmur samples from
normal is a challenging task, and a classification system
that could flag particularly difficult to classify cases as
unknown, as well as provide the uncertainty for the pre-
diction, could significantly reduce the risk of misdiagno-
sis. We developed a tandem learning approach to lever-
age these aspects. Specifically, we first deployed a binary
support vector machine (SVM) classifier to distinguish un-
known samples from all other samples. Subsequently, we
extracted large-scale handcrafted features and fed them
into a Deep Neural Network (DNN), trained to differen-
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tiate between murmur and normal samples. Our DNN had
a built-in uncertainty awareness component that leveraged
Monte-Carlo dropouts: this allowed us to alter the predic-
tion for high uncertainty samples back to unknown. With
this tandem learning strategy, we decomposed the original
complex task into two simpler ones and thus lowered the
risk of misclassifying the unknown samples. We also ex-
plored the benefit of ensemble approach for this task.

The main contributions of this paper are as follows:
• We describe a novel tandem learning pipeline for heart
sound classification;
• We demonstrate that a two-step (tandem) approach per-
forms better than a single-step – three-class approach for
normal and unknown detection;
• We implement, for the first time, uncertainty estimation
via Monte Carlo dropouts for HS classification.

2. Methods
2.1. Tandem learning

For the HS classification task into normal, murmur, and
unknown samples, we employed a tandem approach. We
focused on maintaining high sensitivity by avoiding mis-
classifying murmur or unknown samples by splitting the
task into two sub-tasks. The first sub-task concerned it-
self with distinguishing unknown samples from the rest
(where murmur and normal samples were joined into a
single “known” class). The second sub-task focused on
correctly identifying murmur samples, where only normal
and murmur samples were used for training. During this
step, any samples where uncertainty was too high were la-
belled as unknown. Finally, the predictions for every sam-
ple were combined to form a final diagnosis prediction for
the patient. The exact pipeline can be seen in Figure 1.

2.2. Tackling class imbalance

In order to tackle the class imbalance during training, we
experimented with resampling techniques: naive resam-
pling and SMOTE [5]. Based on our preliminary results, it
appeared that naively upsampling the minority class while
downsampling the majority class yielded the best perfor-
mance. Specifically, for the first sub-task unknown class
was upsampled so that the resulting number of samples
is three times larger than the original, and then the num-
ber of normal and murmur samples was reduced to match
the number of upsampled unknown samples. A similar ap-
proach was used for the second sub-task, except that the
murmur class was upsampled five times.

2.3. Preprocessing

According to our preliminary analysis, the best perform-
ing set of features for the first sub-task appeared to be

hand-crafted spectral features, extracted over 1024 data-
points with 512 points hop length and averaged over the
duration of the audio sample. The features extracted in-
cluded chroma short time Fourier transform, melspectro-
gram, 40 Mel frequency cepstral coefficients (MFCCs),
root mean square, spectral centroid, spectral bandwidth,
spectral contrast, spectral flatness, spectral roll off, poly
features, and, finally, zero crossing rate. For the sec-
ond sub-task, we extracted the INTERSPEECH ComParE
2018 feature set (IS-18) [6], yielding 6373 features. It has
been shown to perform well in a wide variety of audio-
related tasks, including HS classification [7].

For the first sub-task the features were scaled by remov-
ing the mean and scaling to unit variance and reduced to
0.99 variance using principal component analysis. For the
second sub-task, the features were scaled but not reduced.

2.4. Prediction and evaluation

In order to detect unknown samples, we used an SVM
with a linear kernel with hand-crafted spectral features
used as inputs. Then, for murmur detection, we fed IS-18
features into a neural network with Monte Carlo dropout,
training it for 15 epochs. The neural network consisted
of 6 dense layers with relu activation and dropout of 0.5
for every layer except the first one, where the dropout was
0.2. The last layer of the network was softmax. Preserv-
ing dropout for testing, a number of predictions was ob-
tained on the samples from the test set, and the deviation
of the predictions was considered as model uncertainty.
We tried various number of predictions starting from 10,
but we got the best performance when obtaining 50 pre-
dictions per sample. The samples for which deviation ex-
ceeded 0.2 were then labelled as unknown, to further boost
the model’s sensitivity to murmur.

For model comparison we used murmur score, as sug-
gested by the PhysioNet challenge. We also used total ac-
curacy, defined as the number of correctly classified sam-
ples divided by the total number of samples, weighted
accuracy, which is a sum of sensitivities for individual
classes divided by the number of classes, as well as sensi-
tivity and specificity of murmur, sensitivity of normal, and
sensitivity of unknown.

For performance evaluation we implemented cross-
validation, since the official validation data were not avail-
able, and the released data were limited.

In hope to further boost the performance of the algo-
rithm for the challenge, we implemented ensemble learn-
ing. The DNN model was trained from scratch ten times
for each of the validation folds, to account for performance
variability induced by random weight initialisation. The
three best-performing on validation set models were se-
lected for final classification, using for evaluation the mur-
mur score equation provided by the challenge. Major-
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Figure 1. A diagram demonstrating the tandem learning approach and subsequent combining of predictions per patient.

ity voting scheme was exploited to derive a final predic-
tion [8]. For unknown classification, the most sensitive
classifier was chosen from 10 resulting SVMs (one SVM
per fold), and the best one was used for final prediction.

Finally, to obtain the final prediction for each sample,
the outcomes from both prediction stages were combined.
Afterwards, to derive the final prediction for each patient,
predictions for all samples belonging to the same patient
were combined following a predefined rule (cf. Figure 1).

3. Experiments and Results

For the proposed tandem approach evaluation, we
randomly split the challenge dataset into ten patient-
independent folds to carry out 10-fold cross-validation,
and reported the average performance and variance across
all folds. Within each round of ten, one out of the remain-
ing nine folds was held out for ensemble model selection
and hyper-parameter identification, while multiple identi-
cal models were trained on the other eight folds. This pro-
cess was continued iteratively until every fold out of the
remaining nine was selected once as the held out set.

Herein, we compared our approach with a non-tandem
approach. Specifically, we implemented a three-class
DNN, where 6373 OpenSMILE features were fed into
an uncertainty-aware 6-layer DNN, similar to the one de-
ployed in the 2nd sub-task of our tandem approach, for
classifying normal, murmur, and unknown samples in one
step. Moreover, for a fair comparison, similar ensemble
learning implementation was also used for this DNN-based
non-tandem approach for performance boosting. There-
fore, two approaches were compared in our experiments:
namely, the 3-class DNN w/ ensemble, and the proposed
tandem w/ ensemble. The obtained performance in terms
of aforementioned seven metrics for the two models is pre-
sented in Table 3.

As shown in Table 3, the tandem model outperforms the
3-class DNN model in five out of the seven metrics, yield-

ing a mean accuracy of 0.55 across all folds with a 14.6%
relative performance improvement over the DNN model.
Similarly, the obtained average performance in terms of
weighted accuracy, the specificity of murmur, and the sen-
sitivity of normal are also increased from 0.44, 0.42, and
0.42, to 0.47, 0.69, and 0.57, respectively. More impor-
tantly, we show that by leveraging two-step binary classi-
fication strategy with uncertainty score, the tandem model
boosts the performance of unknown detection, leading to
0.23 for the sensitivity of unknown.

However, the tandem approach did not achieve bet-
ter scores for the official performance metric, obtaining
a slightly lower murmur score when compared with the
DNN model. This might be due to the much better perfor-
mance of murmur sensitivity obtained by the DNN model.

Besides evaluating on data where labels were accessible,
we participated in the Physionet 2022 challenge under the
team name mobihealth. On the murmur detection task we
obtained the scores of 0.467 (ranked 34th out of 40) and
0.374 (ranked 40th out of 40) on the hidden validation and
test sets, respectively (Table 1). On the clinical outcome
identification task, we scored 11032 (ranked 25th out of 39)
and 18754 (ranked 39th out of 39) on the hidden validation
and testing sets, respectively (Table 2). For both tasks, the
results on the training set are reported based on patient-
independent 10-fold cross-validation.

Training Validation Test Ranking
0.56± 0.05 0.47 0.37 40/40

Table 1. Weighted accuracy metric scores for our final
selected entry for the murmur detection task.

Training Validation Test Ranking
6001± 1005 11032 18754 39/39

Table 2. Cost metric scores for our final selected entry for
the clinical outcome identification task.
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Metric 3-class DNN w/ ensemble Tandem w/ ensemble
Accuracy↑ 0.48 ± 0.06 0.55 ± 0.04
Weighted accuracy↑ 0.44 ± 0.05 0.47 ± 0.06
Sensitivity of murmur↑ 0.87 ± 0.09 0.63 ± 0.14
Specificity of murmur↑ 0.42 ± 0.07 0.69 ± 0.05
Sensitivity of normal↑ 0.42 ± 0.07 0.57 ± 0.06
Sensitivity of unknown↑ 0.03 ± 0.06 0.23 ± 0.18
Murmur score↑ 0.60 ± 0.06 0.56 ± 0.05

Table 3. Overall performance. Results presented are mean ± standard derivation for 10 folds.

4. Discussion and conclusions

With the release of a new HS dataset as a part of Phy-
sionet 2022 Challenge, we developed a new uncertainty-
aware approach for murmur detection, comparing two
methodologies: two-step tandem learning and one-step
three-class classification.

We observed that while the one-step approach achieved
a better murmur score, it performed poorly on unknown
detection. The proposed uncertainty-aware tandem learn-
ing, however, performed significantly better in unknown
detection, and demonstrated a more balanced performance
between murmur and normal detection.

Generally poor unknown sensitivity may have been
caused by many “known” samples getting mislabelled as
unknown; and, despite high specificity, the errors might
have been introduced when combining results per patient.
Therefore, future work could focus on exploring what re-
duces the model certainty on “known” samples, as well as
alternative methods for combining results per patient.

In the present study, we prioritised identification of un-
known samples due to its high value in practical applica-
tions. Early detection of samples with low model confi-
dence could allow to prompt a user to repeat the recording
in a less noisy environment or changing the stethoscope
position, leading to a more accurate diagnosis.

The official challenge scores, however, place more
weight on murmur detection. As a result, although our ap-
proach improved the model performance on the unknown
class, the official performance attained by our approach
was relatively poor. In addition, we observed notable per-
formance differences between the validation and test sets
for our method as well as others’. This might indicate a
distribution mismatch between these two sets. In contrast,
we performed cross-validation which might give a better
insight on how a model would generalise.

While the main focus of this challenge was a three-class
classification, the dataset’s metadata contains detailed in-
formation about the murmurs which could be used for
more granular diagnosis. Worth noting that our approach
did not use segmentation, errors in which could potentially
lead to misdiagnosis upon more granular classification.
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