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Abstract 

As part of the George B. Moody PhysioNet Challenge 

2022, our team (amc-sh) developed new computational 

approaches to diagnose cardiac abnormality or heart 

murmur. The proposed deep learning models for 

detecting heart murmur were based on EEGNet and 

temporal convolutional networks to employ learning 

frequency-temporal-specific representation from 

phonocardiogram. To learn patient-specific 

representation of phonocardiogram, we also utilized 

demographic information: age, sex, BMI, pregnancy 

status. From view of frequentist inference, we extracted 

statistical features and trained two separate Random 

Forest models to classify heart murmur and patient 

outcome. The weighted accuracy of murmur detection in 

5-fold CV in public training set was 0.727 and challenge 

cost for outcome detection was 11,886. Our team (amc-sh) 

recorded 0.688 (rank: 22/40) weighted accuracy in 

murmur detection, 13,002 (rank: 20/39) challenge cost 

for outcome detection as final score. 

 

1. Introduction 

Phonocardiogram (PCG) is sounds recorded activity of 

the heart when it is beating, it is an important sign when 

patients are diagnosed for heart diseases. In heart sounds, 

there exist two sounds, first sound(S1) and second 

sound(S2), generated from valves activity of the heart. 

Systole interval is defined by interval between S1 and S2, 

and diastole interval is between S2 and S1. In general, 

heart sounds waveform is a collection of cycles of S1-

Systole-S2-Diastole without considering noises. 

Heart murmurs are noises generated from valves 

diseases including aortic stenosis, mitral regurgitation, etc. 

Heart murmurs usually appear in systole or diastole. 

Because heart murmurs can be clue for heart diseases, 

detecting murmurs is essential problem aspect clinical 

applications of deep learning. 

The George B. Moody PhysioNet Challenge 2022 

provide patient heart sound recordings [1] to enable 

participants designing novel algorithms to detect heart 

murmur and cardiac abnormality. As part of the 

Challenge [2], our goal is to detect heart murmurs on 

pediatric dataset using 1-D convolutional neural networks. 

 

2. Methods 

In this paper, we present the architecture and processes 

to detect murmur existence. The Proposed method 

consists of two phases, murmur detection model and 

diagnosis model. Our workflow is described at Figure 1. 

On the first phase, we trained deep learning models to 

detect murmur presence of pre-processed and segmented 

signal. If a recoding is murmur sounds, then we labelled 

all segmented signals as murmur presence. Our model is 

based on 1D convolutional neural networks. In the first 

phase, CNN models only predict whether each segmented 

signal is murmur present or absent except unknown class. 

At the next phase, our models determined whether an 

arbitrary patient has heart murmur or abnormality. 

Because heart murmur appears periodically during systole 

or diastole interval, most segmentations from a murmur 

recording should have murmur characteristics. Once CNN 

models predict most segmentations as murmur presence, 

then we classified the recording and patient as murmur 

presence. As a criterion of classification, we extracted 

statistic from outputs of CNN models for segmentations. 

We worked above processes per auscultation locations. 

Then we employed to learn decision rules using machine 

learning models. 
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We worked each phase after splitting training dataset. 

Frist split training data is used for training deep learning 

models, not including unknown class. Second split dataset 

is used for training diagnosis models, including unknown 

class. 

For abnormality of heart sound, we attempted to 

predict abnormal signal using murmur detection models. 

 

2.1. Dataset 

 

Public dataset in this challenge is pediatrics dataset 

recording heart sounds and collected from four cardiac 

auscultation: Aortic valve, Pulmonary valve, Tricuspid 

valve, Mitral valve [1]. Training dataset includes 

recordings of heart sounds, segmentation labels, 

demographic information and murmur characteristics like 

shape, pitch, etc. There are two goals in this challenge [2], 

prediction for murmur presence and abnormality. Each 

recording or patient was labelled by expert. Every heart 

sound was sampled by 4000hz. When deep learning 

model was trained, we used only parts that the 

segmentation labels are non-zero. When diagnosis model 

was trained, entire wave was used. 

 

2.2. Pre-processing 

    The pre-processing includes segmentation, spike 

removal, resampling, and normalization. Since the typical 

heart rate of children is in the range of 75-180, we set the 

length of the segment as 1 seconds. Therefore, each 

segment contains at least 1 complete heart-beat sounds 

including S1 and S2, systole and diastole sound. We used 

75 % of overlap to increase the number of samples and to 

allow smooth transition between each segment. We used 

Schmidt spike removal introduced in [3] to remove 

unwanted spike signals. We tested various sampling rates 

and found that 2-time downsampling did not affect 

performance of the model. Therefore, we used 2 time 

down sampling from 4,000 Hz to 2,000 Hz to reduce 

processing time. After segmentation, spike removal and 

resampling, each segmented signal is normalized by its 

absolute maximum value. For demographic features, each 

feature was normalized by maximum value. We replaced 

missing value to mean value for weight and height, and 

mode for age. Then we calculated body mass index 

(BMI), defined by 
𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡2(𝑚)
. Upper bound of BMI was 

restricted by 30. We used four demographic features: age, 

sex, BMI, pregnancy status. 

 

2.3. Models 

Proposed models in this study were based on learning 

characteristics of heart murmur aspect frequency range. 

Typically, heart sounds, including first and second heart 

sound, are audible in frequency range from 20 to 200hz 

[3]. But some abnormal signal due to cardiac diseases can 

appear on other frequency range [4]. Figure 2 described 

the change of murmur signal according to the frequency 

range. 

Because capturing frequency range for abnormal signal 

can help to learn murmur representation, proposed model 

was constructed to learn frequency-temporal features. 

Figure 3 described architecture of our models. 

From above motivations, proposed models were based 

on two model, EEGNet and Temporal Convolutional 

Networks (TCN). 

EEGNet is introduced by [5] to learn frequency-

specific spatial filters for EEG signal. EEGNet consist of 

three parts: 2D convolution networks, Depthwise 

Convolution, Separable convolution. EEGNet learns 

specific frequency range through 2D convolutional layers 

and Depthwise Convolutional layers. Then separable 

convolution learns relationship and combines from 

 

 

Figure 1. Workflow for heart murmur and outcome 

detection. Each patient's recordings are segmented and 

predicted by a trained neural network and the statistic of 

prediction score distribution is derived. These features are 

used for patient condition (murmur or outcome status) 

prediction. 

 
Figure 3. Example of holosystolic murmur with grade 2 

in different frequency bands. (Raw signal, 20~200 Hz, 

200~400 Hz and 400~600 Hz band-pass filtered signals 

respectively. 
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different feature maps. In this study, EEGNet employ to 

learn murmur-specific band-pass filtering. 

After feature extraction through modified EEGNet, we 

expanded our model using temporal convolutional 

networks (TCN) [6, 7]. TCN architecture was built by 

stacking residual networks with dilated causal 

convolution. Dilated causal convolution learn temporal 

representation of input data with large receptive field. 

Our combined EEG-TCN models referred to [8]. We 

added stride convolution between EEGNet and TCN 

blocks. Also, every activation function was exponential 

linear units [9]. We used batch normalization in EEGNet 

block and weight normalization [10] in TCN residual 

block. Then we used skip connections throughout each 

residual block [7]. Classifiers consist of 3 Fully connected 

layers after 1D global average pooling layers.  Our loss 

function was focal loss, proposed by [11]. Its formula is 

as followings. 

 

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 =  −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) 

 

Where 𝛼𝑡 is balancing factor for class imbalance and 𝛾 

is modulating factor to classify between easy samples and 

hard samples. In this study, we set the parameters of loss 

function as default values (𝛼𝑡 = 0.25, 𝛾 = 2). 

We additionally utilized demographic information to 

employ learning patient-specific heart sound signals. Pre-

processed demographic features were trained by 1 fully 

connected layer with linear activation and L2 

regularization. Then demographic features were 

concatenated with feature vectors after global average 

pooling. 

 Each TCN residual block had 128 filters, 3 kernel size. 

We stacked 8 (murmur detection) or 10 (outcome 

detection) residual blocks and set the dilation rate as 

(1, 2, 4, … , 2𝑛), exponentially. In EEGNet block, first 2D 

convolution had 32 filters and (1, 64) kernel size. We set 

64 filters and (1, 16) kernel size in separable convolution. 

And stride convolution had 64 filters and 7 kernel size 

and 2 strides size. We selected the number of residual 

blocks by considering length of heartbeat events. 

We used two separate random forest (RF) models as 

our diagnostic model (scikit-learn). One is for 3 classes of 

murmur classification, and another is for the outcome 

classification. We validated diagnostic models with 5-fold 

CV. Two parameters, maximum depth of tree and number 

of estimators are optimized by max_depth and 

n_estimator parameters in RandomForestClassifier 

function in scikit-learn package.  

For training diagnosis model, features were extracted 

from sigmoid outputs of EEG-TCN models. We utilized 

statistics such as mean, skewness, kurtosis from 

distribution of EEG-TCN classifier’s outputs for all 

segmentations. We additionally utilized proportion of 

murmur positive segmentation over total segments. 

Our assumption for above features extraction is that 

models will yield skewed prediction for murmur presence 

or absence from an overall signal. We also expected that 

unknown class has different distribution than present case 

or absent case (for example, normal distribution). 

Our feature extraction was processed for each 

auscultation locations (Aortic valve, Pulmonary valve, 

Tricuspid valve, Mitral valve), respectively. We totally 

extracted 16 features (4 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 × 4 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) from 

one patient. If there were no auscultation locations, we 

filled zero values. For outcome diagnosis model, we 

worked same processes. 

 

3. Results 

Training Validation Test Ranking 

0.727 0.689 0.688 22/40 

Table 1. Weighted accuracy metric scores (official 

     

                         

                    

   

       

                         

                    

   

       

 

     

              

                   

                     

                   

   

       

                     

                   

   

       

                  

                  

      

 

   

                      

           

                    

        

           

               

                 

                 

            

Figure 3. Model architecture. Left: Overall architecture. Middle: EEGNet. Right: TCN residual block 
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Challenge score) for our final selected entry (team amc-sh) 

for the murmur detection task, including the ranking of 

our team on the hidden test set. We used 5-fold cross 

validation on the public training set, repeated scoring on 

the hidden validation set, and one-time scoring on the 

hidden test set. 

 

Training Validation Test Ranking 

11,886 9,203 13,002 20/39 

Table 2. Cost metric scores (official Challenge score) for 

our final selected entry (team amc-sh) for the clinical 

outcome identification task, including the ranking of our 

team on the hidden test set. We used 5-fold cross 

validation on the public training set, repeated scoring on 

the hidden validation set, and one-time scoring on the 

hidden test set. 

 

4. Discussion and Conclusion 

For the outcome prediction challenge, our team 

achieved 11,886 challenge cost in 5-fold CV of public 

training dataset and 9,203 challenge cost for the 

validation dataset. Our method showed 13,002 challenge 

cost for the test dataset and ranked 20/39 for the outcome 

prediction challenge. We had lowest challenge cost in 

validation dataset but had highest cost in test dataset. This 

may be explained by population shift so we investigated 

this effect by additionally considering demographic 

features on our EEG-TCN model. When we concatenated 

demographic features on embedding features of proposed 

models, the model showed improved murmur 

classification performance. For each demographic feature 

(age, BMI, sex, pregnancy status), the improved 

performance was 0.663, 0.663, 0.527, 0.572, respectively 

while baseline precision was 0.517. Considering all 4 

features at the same time, the improvement was 0.555. 

Therefore, age and BMI feature were the most 

informative feature for improving murmur detection 

capability of our model. Therefore, BMI feature was the 

most informative feature for improving murmur detection 

capability of our model. This result indicates that 

importance of incorporating demographic features to 

classify murmur or patient outcome to regularize 

distribution shift due to different cohort. Further 

investigation on the performance of outcome prediction is 

absolutely needed and our group is planning to pursue 

this direction as our future work. 
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