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Abstract

Portable ECG devices with a reduced number of leads
are increasingly being used in clinical practice. As part of
the PhysioNet/Computing in Cardiology Challenge 2021,
this study aims to develop an algorithm for automated
diagnosis of reduced-lead ECGs. We compared sepa-
rate baseline classifiers for the different lead-subsets with
our newly proposed shared classifier. The different mod-
els were pre-trained on a physician-annotated dataset of
269,726 12-lead ECGs. Fine-tuning was done on the chal-
lenge dataset, consisting of 88,243 ECGs. Even though
different models showed promising results on the internal
pre-training dataset, optimal scores were achieved by the
baseline model on the hidden test set. Our team, UMCU,
received scores of 0.47, 0.40, 0.41, 0.41, and 0.41 (ranked
14th, 17th, 17th, 17th, and 16th out of 39 teams) for the
12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the
hidden test set.

1. Introduction

The 12-lead electrocardiogram (ECG) is an essential di-
agnostic tool in clinical practice. Considering the increas-
ing popularity of portable ECG devices, current ECG clas-
sifiers need to be adjusted for reduced lead sets. The Phy-
sionet/Computing in Cardiology Challenge (CinC) 2021
[1, 2] aimed to address this problem by providing a large
dataset of publicly available 12-, 6-, 4-, 3- and 2-lead
ECGs, in which open-source algorithms were compared
on a hidden test set. Recently, exponentially dilated causal
convolutions were proposed for analysis of 12-lead ECGs,
as they take the temporal nature of the ECG into account
and are able to learn long-range dependencies [3]. In this
study, we propose that this architecture could be enriched
with a shared latent space for the different reduced lead
sets, to minimize the difference in performance.

2. Methods

2.1. Data

The training data consisted of 88,243 12-lead ECGs
from 5 different hospitals in different countries [4–9]. Sig-
nal lengths ranged from 5 seconds to 30 minutes and sam-
pling frequencies from 257 Hz to 1000 Hz. Each ECG
was linearly resampled to 500 Hz and only the first 10
seconds were used. ECGs shorter than 10 seconds were
zero-padded on the right. Each ECG was annotated with
one or more SNOMED-CT codes, and the 30 most preva-
lent were used to calculate the challenge metric. Four pairs
of diagnoses were considered equivalent, if either of them
was present the class was said to be active. This resulted in
a total of 26 distinct classes. The goal of the challenge is
to classify these diagnoses on different lead subsets. The
following lead subsets were used:

• Twelve leads: I, II, III, aVR, aVL, aVF, V1-V6
• Six leads: I, II, III, aVR, aVL, aVF
• Four leads: I, II, III, V2
• Three leads: I, II, V2
• Two leads: I, II

As the training dataset only consists of 12-lead ECGs,
the corresponding leads were extracted from the 12-lead
ECGs when training for a specific lead subset.

All models were pre-trained on an internal dataset of the
University Medical Center Utrecht (UMCU). The dataset
contained 287.442 10-second ECGs sampled at 500 Hz,
recorded using the General Electric MAC 5500 Resting
ECG acquisition and analysis system (GE Healthcare,
Chicago, IL, USA). The ECGs were physician annotated
as part of the standard clinical workflow. A random subset
of 17,716 ECGs was used for validation, the rest for pre-
training. The classes with the corresponding occurrences
in the pre-training- and training datasets are shown in Ta-
ble 1.
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Diagnosis UMCU CinC
Atrial fibrillation 20696 (7.7%) 4222 (6.0%)
Atrial flutter 2963 (1.1%) 6734 (9.6%)
Bundle Branch Block 0 (0.0%) 405 (0.60%)
Bradycardia 21181 (7.9%) 235 (0.3%)
LBBB 7757 (2.9%) 1191 (1.7%)
RBBB 17614 (6.5%) 3858 (5.5%)
1st degree AV block 11503 (4.3%) 2838 (4.0%)
IRBBB 17614 (6.5%) 1505 (2.1%)
Left axis deviation 21599 (8.0%) 6125 (8.7%)
LAFB 7672 (2.8%) 1756 (2.5%)
Low QRS voltages 8408 (3.1%) 1276 (1.8%)
NICD 7613 (2.8%) 1420 (2.0%)
Sinus rhythm 190375 (71%) 23023 (33%)
PAC 12824 (4.8%) 2617 (3.7%)
Pacing rhythm 4341 (1.6%) 1158 (1.7%)
PRWP 6212 (2.3%) 519 (0.7%)
PVC 11237 (4.2%) 1543 (2.2%)
Prolonged PR interval 11503 (4.3%) 323 (0.46%)
Prolonged QT interval 8670 (3.2%) 1496 (2.1%)
Qwave abnormal 27265 (10%) 1662 (2.4%)
Right axis deviation 2863 (1.1%) 1031 (1.5%)
Sinus arrhythmia 8372 (3.1%) 3068 (4.4%)
Sinus bradycardia 19808 (7.3%) 15195 (22%)
Sinus tachycardia 25835 (9.6%) 7692 (11%)
T wave abnormal 64224 (24%) 9349 (13%)
T wave inversion 4817 (1.8%) 3194 (4.6%)

Table 1. Number of ECGs with the corresponding per-
centage per class in both the UMCU and the CinC training
datasets. LBBB: left bundle branch block, RBBB: right
bundle branch block, IRBBB, incomplete right bundle
branch block, NICD: nonspecific intraventricular conduc-
tion delay, PAC: premature atrial complex, PRWP: poor R
wave progression, PVC: premature ventricular complex.

2.2. Approaches

The chosen approach is an extension on the work of [3],
proposed in the CinC challenge 2020. The core model is
an exponentially dilated causal convolutional neural net-
work, consisting of a convolution backbone followed by
an Adaptive Pooling layer to combine the features over the
temporal dimension, after which a linear layer created the
final output. The sigmoid function is used to scale each
of the 26 outputs between 0 and 1. All methods use the
focal loss [10] during training, which is an extension of
the cross-entropy loss to focus on the wrongly predicted
samples. To correct for the class imbalance, each class
is weighted by dividing the maximum number of positive
samples from any class by the number of positive samples
from the weighted class. To make the actual predictions,
a threshold of 0.5 was used, all values above were set as
positive, all others were set as negative.

2.2.1. Baseline

The exact architecture as proposed by [3] was used as a
baseline, with only the number of input channels altered to
allow classification on the different reduced-lead subsets.
This approach has 5 completely separate classifiers, one
for each subset. No additional tuning of model hyperpa-
rameters was performed. Next, the baseline was extended
by adding the age and sex of the patient to the latent rep-
resentation before the final linear layer. The age is added
directly (a default of 60 was used in case of missing val-
ues), for sex the values 0 and 1 were used to encode female
and male respectively (with 1 being the default for missing
values).

2.2.2. Shared classifier

In contrast to the baseline where 5 separate models are
used, we propose the use of a shared classifier. In this set-
ting, each of the reduced-lead subsets had a separate con-
volutional backbone which produces an latent representa-
tion of the ECG. This latent embedding is subsequently
entered into a multilayer percepton model to predict the di-
agnostic classes. This part of the model shares its weights
with the all the corresponding reduced lead sets of the same
ECG during training. When the algorithm is deployed, it
will also work when only a single lead set is entered. The
number of linear layers was manually tuned using short
runs on a subset of the data, which showed that a 3-layer
classifier outperformed the single layer classifier. It is ex-
pected that the shared classifier results in a reduced per-
formance on the 12-lead, and possibly 6-lead, ECG due to
the sharing of the classifier. However, this reduced per-
formance on the higher order subsets should come with a
corresponding increase in performance on the lower order
subsets.

The shared classifier was extended to also use a shared
latent space between the different backbones. An addi-
tional loss term is proposed based on the Euclidean dis-
tance between the latent representation after the backbone
for each of reduced-lead subsets and the 12-lead repre-
sentation, which were all around 10 and did not decrease
over time without the additional loss term. The average of
these distances was added to the loss function with a small
weight (0.0001, 0.001 and 0.01 were tried). This additional
loss term did decrease the average euclidean distance, but
also decreased performance for all of the lead subsets so
much that it was decided not to use this additional loss
term in the final version.

2.3. Training and Inference

For pre-training and training, the same procedures were
followed, the difference being the dataset used. The Adam
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optimizer [11] was used with a batch size of 64. For both
pre-training and training, early stopping was used after five
consecutive epochs without the CinC challenge metric in-
creasing on the validation dataset. The model with the
highest validation score was stored and used as the final
model. Early stopping was used due to time restrictions,
but this made the training procedure unstable. There were
cases were the early stopping was reached after 6 epochs,
whereas in a next training run with the exact same settings
it took 19 epochs to converge, resulting in a higher chal-
lenge score.

The shared classifier was trained gradually where at
each training step one of the reduced-lead classifiers was
trained. Predictions were made and evaluated for a lead
subset, the loss was backpropagated and used to update
the parameters of the backbone and the shared classifier.
At the next step, the next lead subset would be used.

The learning rate of 0.001 and the freezing of the first 5
convolutional blocks of the Causal CNN after pre-training
were selected based on the results from [3].

3. Results

The CinC challenge scores for the different lead subsets
after pre-training and fine-tuning are shown in Tables 2 and
4 respectively. Overall, the CinC challenge scores are the
highest on the UMCU validation set. The baseline out-
performed the other models, after which the baseline was
pre-trained longer until 10 consecutive epochs without im-
provement on the validation set, these results are shown
as Baseline and Baseline 10. The optimal model was the
baseline with the longer pre-training and the final results
of that model are shown in table 5.

Model 12 6 4 3 2
Baseline 0.547 0.550 0.543 0.582 0.528
Baseline 10 0.670 0.587 0.658 0.641 0.599
Baseline 0.632 0.588 0.641 0.630 0.573

+ age and sex
Shared classifier 0.451 0.452 0.616 0.416 0.481

Table 2. Validation CinC scores on UMCU dataset after
pre-training.

Method 12 6 4 3 2
Baseline 0.965 0.938 0.963 0.957 0.947
Baseline 10 0.967 0.951 0.964 0.966 0.950
Baseline 0.959 0.951 0.958 0.965 0.950

+ age and sex
Shared classifier 0.950 0.911 0.941 0.936 0.907

Table 3. Validation AUC scores on UMCU dataset after
pre-training.

Model 12 6 4 3 2
Baseline 0.554 0.526 0.534 0.538 0.527
Baseline 10 0.559 0.540 0.534 0.543 0.530
Baseline 0.539 0.537 0.532 0.540 0.527

+ age and sex
Shared classifier 0.409 0.432 0.478 0.450 0.434

Table 4. Validation CinC scores on CinC dataset after
fine-tuning.

Leads Training Validation Test Ranking
12 0.670 0.559 0.47 14

6 0.587 0.540 0.40 17
4 0.658 0.534 0.41 17
3 0.641 0.543 0.41 17
2 0.599 0.530 0.41 16

Table 5. Challenge scores for our final selected entry
(team UMCU) on the validation set of the UMCU dataset
after pre-training, repeated scoring on the hidden valida-
tion set, and one-time scoring on the hidden test set as well
as the ranking on the hidden test set.

4. Discussion and Conclusions

In the present study we investigated whether ”Two will
do it” to identify 26 clinical diagnoses from reduced lead
ECGs. The results from our study indicate that reducing
the number of ECG leads from 12 to 2 only slightly af-
fects CinC challenge classification performance. The base-
line model with longer pre-training therefore outperformed
all other methods (see Table 4). Surprisingly there is a
very limited degradation in performance with a reduction
of used leads. This could be due to the inherent nature
of the ECG, a single lead captures electrical activity from
the whole heart. Especially for rhythm related disorders
it makes sense that classifying does not get more difficult
with fewer leads, as the rhythm of the ECG is captured in
each of the leads. Another possibility is that this lack of
reduced performance is due to the way the CinC challenge
score is calculated. It might be that an increasing number
of leads makes the model more certain of its prediction,
the challenge score however only looks at the binary pre-
dictions without taking the certainty into consideration.

This study was the first to use a shared classifier to im-
prove performance on reduced-lead ECGs by exploiting
the additional information from the corresponding 12-lead
ECG. Even though the absolute scores resulting from the
shared classifier are lower compared to the baseline, we see
that all the reduced-lead subsets score higher than the 12-
lead ECG, with the 4- and 6-lead ECGs scoring the high-
est (see Table 4). A limitation of the current approach of
training 5 backbones together with the shared classifier, is
that all final 6 models were selected based on when the
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average validation loss over the different subsets was op-
timal. When looking at the validation curves, we saw that
the different subsets achieved the best scores after differ-
ent epochs. In retrospect, the choice could have been made
to keep the training process the same, but store the back-
bone and the state of the shared classifier separately when
each of the subsets achieve the highest validation set. This
would only work for fine-tuning the model, as otherwise
there would be different versions of the shared classifier
after pre-training.

In all cases, the CinC challenge metric is higher on the
UMCU validation set after pre-training compared to the
validation scores after finetuning on the CinC dataset. This
could be due to the larger training dataset for the UMCU
dataset or the distribution of the scored classes. When
looking at the baseline extended with the age and sex, we
see that this improves the scores quite a bit on the UMCU
dataset, whereas this is not the case on the CinC dataset.
This could be due to the fact that most age and sex infor-
mation is already encoded in the ECG itself [12].

Not only the varying scores, with reduced-lead subsets
scoring higher than the original 12-lead in some settings,
but also the varying number of epochs during training indi-
cate that the time limitation has a strong effect on the final
performance. When the baseline was pre-trained longer,
the challenge score increased for all the subsets.

Overall, we can state that the classification performance
of ECG disorders measured by the CinC challenge met-
ric only reduces slightly when decreasing the number of
leads. The current baseline architecture with exponentially
dilated causal convolutions outperforms our shared classi-
fier, although the later does show the expected behaviour
of better performance for the reduced-leads compared to
the original 12-lead ECG.
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