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Abstract 

As part of the PhysioNet/Computing in Cardiology 

Challenge 2021, Our team, HeartBeats, developed an 

ensembled model based on SE-ResNet for identifying 30 

kinds of cardiac abnormalities from different lead 

combinations of electrocardiograms (ECGs). At pre-

processing stage, ECGs were down-sampled to 500 Hz and 

each record is normalized using Z-Score normalization. 

We then employed several residual neural network 

modules with squeeze-and-excitation blocks to learn from 

the first 15-second segments of the signals. We designed a 

multi-label loss to emphasize the impact of wrong 

predictions during training. We relabelled the dataset 

which contains only 9 classes using our baseline model 

build in last year’s challenge. Five-fold cross-validation 

was used to assess the performance of our models. Our 

classifiers received the scores of 0.58, 0.55, 0.56, 0.53, and 

0.53 for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead 

versions with the Challenge evaluation metric. Our final 

model performed well on the test data. However, the 

results were not officially ranked because our training 

code may select the offline pre-trained models rather than 

using the training data if the pre-trained models performed 

better than the trained models on the training data. The 

model can therefore fail to learn from new training data. 

 

1. Introduction 

Cardiovascular disease is one of the primary causes of 

death globally[1]. Early diagnosis of cardiac diseases may 

be helpful in preventing premature complications and 

deaths by enabling successful interventions. 12-lead ECG 

is a cheap and non-invasive tool to represent the electrical 

activity of the heart. It is commonly used in clinical care to 

discern cardiac abnormalities such as atrial fibrillation, 

bradycardia, arrhythmias and so on. Up to now, 

interpreting ECG still relies on human efforts, which are 

time-consuming and error-prone. In addition, the 

development of ECG devices leads to the rapid growth of 

recording volume of ECG data. As a result, automatic 

detection and classification of ECG abnormalities become 

necessary to reduce the working pressure of physicians and 

improve the accuracy of diagnoses. 

The PhysioNet/Computing in Cardiology Challenge 

2021[2] is an extension of last year’s Challenge [3] in 

which the task is to classify cardiac abnormalities from 

twelve-lead ECGs. This year the participants are asked to 

build the models that can classify cardiac abnormalities 

from not only twelve-lead, but designated six-lead, four-

lead, three-lead, and two-lead ECGs. The details about the 

challenge including rules, data and metrics are described 

in[2]. 

In last year's Challenge, we proposed a deep learning 

framework to automatically identify 27 types of cardiac 

abnormalities using standard 12-lead ECG signal [4], 

which placed us 3rd out of 40 teams in the official ranking. 

Our model outperformed the top two teams [5][6] in the 

hidden validation and two test sets, but fall behind them in 

the third test set. Considering the relationship between the   

two competitions and the unfavorable performance in the 

third test set, we followed the main framework of our last 

year's approach but made some adjustments. Our focus this 

year is to improve the generalizability of the model and 

tune the recall threshold of the model to achieve higher 

Challenge scores. We tackle the problem by a variety of 

strategies, such as threshold adjustment, different 

ensemble approaches for different selected-lead data, 

signal normalization and so on. 

 

2. Method 

Our objective was to propose models that could 

accurately classify 12-lead, 6-lead, 4-lead, 3-lead, and 2-

lead ECG recordings into multiple classes of 30 clinical 

diagnoses. In this section, we will describe in detail our 

approaches in data preprocessing, model construction and 

postprocessing. The framework design of the proposed 

method is seen in Figure 1. We first introduce the multi-

source datasets we used. Then we present the data 

preprocessing techniques that reduce the data divergence, 

the Sign Loss was introduced to solve the class imbalance 

problem, and the design of the ensemble models for each 

reduced-lead ECG signals that enables robustness of the 

classifications. Finally, we present our training setups. 
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2.1.  Datasets & Labelling 

The public challenge training data consists of 88,253 

12-lead ECG signals from eight different datasets. The 

recordings were of varying frequency of the range of 257 

Hz - 1000 Hz and the length of the signals varies from 6 s 

to 30 min. There are 133 abnormalities in the eight dataset, 

30 types of abnormalities are considered in the challenge 

scoring metrics. 

Processing original data.  

INCART dataset was excluded from the training data 

since it has only 74 30-minutes records with a sampling 

frequency of 257 Hz and is significantly different from 

other datasets. Data without a label in the 30 scored classes 

were excluded as well. Signals were re-sampled to have a 

sampling rate of 500 Hz to make the sampling frequency 

of all training data unified. In the rest of the data, we 

randomly split 80% as the training set and 20% as the 

offline test set. The final sizes of the training set and test 

set are 65,765 and 16,445 respectively. 

Relabelling CPSC data. 

There are only 9 types abnormalities in CPSC dataset. It 

was found that there was indeed label omission in CPSC 

data after manually checked by physician. A baseline 

model[4] trained in last year’s Challenge (the baseline 

model in Figure 1.) was used for inferring pseudo labels 

on the CPSC dataset. For each ECG signal in the CPSC 

dataset, inferred pseudo labels were added as new labels if 

(1) the inference output probability was higher than 0.8, (2) 

the labels not in the original nine labels, and (3) the labels 

were in the 30 officially scored labels. The re-labeled 

CPSC will be replace the original CPSC and be used as a 

part of training dataset. Pseudo labels added to CPSC 

dataset is shown in Table 1.  

Class Recordings Class  Recordings 

AFL 3 LQT 9 

Brady 49 SA 2 

CRBBB 1 SB 14 

IRBBB 4 STach 122 

LAD 5 SVPB 57 

LAnFB 2 TAb 13 

LQRSV 1 VPB 6 

PVC 46   

Table 1. Pseudo labels added to CPSC dataset.  

Figure 1. The framework design of the proposed method. (a) The 7 datasets used in training stage. i.e. data from the China 

Physiological Signal Challenge 2018 (CPSC and CPSC2), the Physikalisch-Technische Bundesanstalt databases (PTB and PTB-XL), 

the Georgia 12-lead ECG Challenge (Georgia) database, Chapman University, Shaoxing People’s Hospital (Shaoxing) and Ningbo 

First Hospital (Ningbo) database. St.Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database (INCART) was 

excluded from our training data. (b) Data pre-processing and relabeling CPSC dataset: the input length was fixed at 7500 and different 

reduced-lead ECG are made as the inputs of the models after wavelet denoising. CPSC dataset is relabeled by our baseline model in 

last year’s Challenge. (c) Ensemble strategies: different ensemble policy for different reduced-lead data. For example, 5 models without 

data normalization (Z-Score normalization) were ensembled for 12-lead ECG data, a class is positive if any classifier predict positive. 

(d) NSR Post-processing: signals that were predicted to be negative for all classes in the final result would be classified as positive for 

sinus rhythm (NSR). 
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2.2. Data Preprocessing 

Truncating & padding. 

Recordings were extract as the length of T=15 seconds, 

7500 points. This was done by truncating the part 

exceeding the first T seconds for longer signals and 

applying zero-padding, if the sequence length is less than 

T seconds. 

Normalization. 

Each recording is normalized using Z-Score 

normalization and then multiply 100 so that each channels’ 

signal lies within the range of -100 to 100. 

Wavelet denoising. 

Biorthogonal wavelet transformation (bior2.6) was 

applied to reduce the noise in ECG signals. The numbers 

of vanishing moments for the decomposition and 

reconstruction filters were 2 and 6, respectively. The level 

of refinement was set to be 8, where the high-frequency 

coefficients in level 1, level 2, and level 8 were set to zero. 

 

2.3. System Architecture 

SE-ResNet. 

One important feature of the 12-lead ECG signal is that 

the information contained differs in different leads due to 

the difference in signal voltage intensity and amplitude 

variation. Different ECG abnormalities may be more 

apparent in specific leads. An equal importance of different 

leads could cause information losses, leading to 

misdiagnosis. SE_ResNet [7] is good at capturing the 

distinctive information in each of the multi-leads ECG 

signals, the SE_ResNet architecture is shown in Figure 2. 

 
Figure 2. Architecture of the SE_ResNet model. The parameter 

leads varies according to reduced-lead ECG data, which can be 

12, 6, 4, 3 and 2 for 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead 

versions data. 

Sign Loss. 

Sign Loss function was designed to solve class 

imbalance problem, inspired by Sun et al [8]. The 

improved multi-label Sign Loss is defined as below: 

𝑆𝑖𝑔𝑛(𝑝) = {
𝑦 − 2𝑝𝑦 + 𝑝2, |𝑦 − 𝑝| < 0.5

1,                         |𝑦 − 𝑝| ≥ 0.5
         (1) 

Loss = ∑ 𝑆𝑖𝑔𝑛(𝑝𝑖) × 𝐵𝐶𝐸(𝑝𝑖 , 𝑦𝑖)            (2)30
𝑖=1   

where y denotes the ground truth and p denotes the model’s 

estimated probability for y = 1, BCE indicates Binary 

Cross Entropy Loss. 

NSR Postprocessing. 

If all the classes are predicted as negative, we will make 

the sinus rhythm (NSR) to be positive. That’s because the 

signal contains at least one type of abnormality and NSR 

accounts for a high proportion of the dataset. This setting 

allows us to get a positive challenge score instead of 0 

when all classes are negative. 

 

2.4. Model Ensemble & Threshold 

Adjustment 

In order to improve the robustness of the classifications, 

we created different ensemble strategies for different 

reduced-lead ECG data and models were trained via five-

fold cross validation. For 12-lead ECG data, 5 models 

without data normalization were ensembled, ECGs were 

classified positive if any of the models predicted positive. 

For 6-lead ECG data, 2 models without data normalization 

and 1 model with data normalization were ensembled, 

ECGs were classified in the same way like 12-lead models. 

Specially, the model with data normalization not predict 

low qrs voltages and poor R wave Progression since data 

normalization will destroy features of these two 

abnormalities. For 4-lead ECG data, 3 models without data 

normalization were ensembled, ECGs were classified in 

the same way like 12-lead models, too. For each model 

ensembled in 12-lead, 6-lead and 4-lead models, the 

threshold is 0.35. For 3-lead and 2-lead ECG data, 5 

models without data normalization were ensembled, ECGs 

were classified according the average probabilities of the 5 

models, and the threshold were 0.2 and 0.25, respectively. 

 

2.5. Training Setup 

The proposed model was trained with a batch size of 32 

for 17 epochs as the validation loss was not further 

decreasing. The model parameters were optimized with the 

Adam optimizer Kingma and Ba [9]. During training, the 

learning rate was set as 0.001 and rescheduled to 0.0001 at 

the 15th epoch.  
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3. Results 

Our classifiers received scores of 0.58, 0.55, 0.56, 0.53, 

and 0.53 for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead 

versions with the Challenge evaluation metric (see Table 

2). 

Leads  Training Validation  Test 

12 0.725 0.669 0.58 

6 0.700 0.647 0.55 

4 0.685 0.650 0.56 

3 0.628 0.594 0.53 

2 0.667 0.615 0.53 

Table 2. Challenge scores for our final selected entry (team 

HeartBeats) using 5-fold cross validation on the public 

training set, repeated scoring on the hidden validation set, 

and one-time scoring on the hidden test set. 

 

4. Discussion 

In offline test set, our model performed constantly well 

on AFL, CRBBB, NSR, PR, SB and Stach. The most 

serious problem observed was, classification of some 

abnormalities reached high AUC score but low F-1 score. 

For these abnormalities, there were many false-positives – 

labelled 0 although both the model and the human judged 

as 1. It was an interesting question to construct well 

generalized models from the partial labelled datasets. 

Performance of LQRSV and PRWP, were significantly 

destroyed by the data normalization technique. Their 

features may be closely related to the signal scale. 

However, data normalization benefited LPR and was 

expected to reach more robust prediction to face different 

situations in real world. PRWP and IRBBB performed 

much worse in 2-lead models than 12-lead models. There 

seemed to be important features indicating these 

abnormalities besides the 2-lead signals.   

The overall performance of 6-lead models was worse 

than 4-lead models. The most likely cause of this 

observation was lead V2 was much more important and 

contained much more potential features than aVR, aVL, 

aVF leads for abnormalities identification. 

 

5.  Conclusions 

In this paper, we developed a deep neural network 

architecture and ensemble models for multi-label 

classification of cardiac abnormalities from 12-lead and 

reduced-lead ECGs. In order to improve the robustness of 

the classifications, we adopted signal normalization, 

threshold adjustment, different ensemble approaches for 

different reduced-lead data and introduced Sign Loss for 

tracking class imbalance problem. Our final models 

performed well on the test data. However, the results were 

not officially ranked because our training code may select 

the offline pre-trained models rather than using the training 

data if the pre-trained models performed better than the 

trained models on the training data. The model can 

therefore fail to learn from new training data. Another 

possible reason of not being ranked is that we relabelled 

some data, which can prevent the training code from being 

repeated.  
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