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Abstract 

Treating Heart Failure (HF) patients with mid-range 

Ejection Fraction (HFmrEF) is a challenging task due to 

prognostic uncertainty and transitional behaviour of 

HFmrEF, often referred to as “grey-area”. In this study, 

we address the uncertainty of HFmrEF through Machine 

Learning (ML) by classifying it into two well studied 

phenotypes: HF with preserved Ejection Fraction and HF 

with reduced Ejection Fraction, using the data from 

clinical attributes. We propose a semi-supervised Active 

Learning based model that uses significantly lesser data 

to tackle the need of supervised label validation and 

performs on-par with supervised ML models developed 

for comparison. We believe the use of proposed ML 

models can enable experts in making informed data-

driven decisions leading to the accurate prognosis of HF 

patients. 

 

1. Introduction 

Heart failure (HF) is heart's inability to pump an 

adequate supply of blood to the body. HF is a long-term 

condition that is potentially life threatening if left 

untreated. According to U.S. Centers for Disease Control 

and Prevention, about 6.2 million adults in the United 

States had HF in 2018 [1]. The HF was reported on 

13.4% of the total death certificates issues in 2018 [1]. 

According to the European Society of Cardiology (ESC), 

26 million adults globally are diagnosed with HF. Within 

the first year itself, 17–45% of the patients suffering from 

HF die and the remaining die within 5 years [2]. 

 Clinically, HF has two primary subtypes: Heart 

Failure with Reduced Ejection Fraction(HFrEF) and 

Heart Failure with Preserved Ejection Fraction (HFpEF), 

distinguished on the basis of Left Ventricular Ejection 

Fraction (LVEF) [3,4]. LVEF is a percentage of the 

volume of blood ejected out of left ventricle in each 

contraction [4]. HFrEF is classified by LVEF ≤ 40% and 

HFpEF by LVEF ≥ 50% [3,4]. However, the HF patients 

having 40%< LVEF <50% are not accounted well enough 

through this classification [3]. 

Classification of HF in itself is a complicated task for 

clinicians. Therefore numerous researches have either 

changed the boundary conditions around HFmrEF in their 

studies or referred to it as a “grey-area” [5,6]. This 

classification is essential for determining patients' 

prognosis and treatment but becomes even more 

challenging due to 5%-10% inter-operator variability in 

measuring LVEF [7]. 

Furthermore, patients with HFmrEF had clinical 

characteristics although intermediate between the HFrEF 

and HFpEF groups, yet more similar to those of HFpEF 

[8,9]. However, in the presence of ischemic disease, 

different studies have found that HFmrEF resembles 

HFrEF [10,11]. These complex and ambiguous behavior 

of HFmrEF characteristics motivated our study into 

developing a data-driven ML-based approach for tackling 

the uncertainty in prognosis of HFmrEF. The models 

developed in our study use a combination of clinical 

attributes such as patient characteristics, clinical test and 

echocardiogram results of a patient to accurately classify 

them into the primary phenotypes: HFpEF and HFrEF. 

We want to explore how well a data-driven approach can 

perform for resolving the uncertainty of HFmrEF by 

assigning it to one of the established phenotypes based on 

the data from clinical attributes. 

 

1.1 Literature Review  

In the past, only a few studies have been conducted by 

researchers addressing this problem from ML perspective. 

In 2013, Austin et al. [12] compared the performance of 

different classification methods with conventional 

classification trees and Logistic regression to classify 

patients with heart failure (HF). However, their main goal 

was to compare the algorithms and score their predictive 

ability. Their models achieved area-under-curve between 

0.683 - 0.780. In 2015, Alonzo et al. [13] focused on the 

distinction of HFpEF subtypes using ML techniques. 

They used 397 HFpEF patients and performed detailed 

clinical, laboratory and electrocardiographic phenotyping 

of the participating patients. The study mainly focused on 

finding a better volumetric discriminator as compared to 

LVEF. In 2016, Isler [14] performed a heart rate 

variability(HRV) analysis to distinguish patients with 
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systolic Congestive Heart Failure (CHF) from patients 

with diastolic CHF. Short-term HRV measures were 

given as input to train the classifiers. 18 patients with 

systolic and 12 patients with diastolic CHF were enrolled.  

Past research which correlates to the problem 

addressed in our study does not directly focus on 

classification of HFmrEF patients. The studies have used 

different, often conventional methodologies with fewer 

patients to pursue less similar objectives. The challenge is 

to classify  

 

2. Dataset 

The dataset used in our study consists of 495 patients 

diagnosed with Heart Failure. The published dataset 

consists of patients retrospectively selected from 

electronic healthcare records admitted with HF between 

December 2016 to June 2019 in Zigong Fourth People’s 

Hospital  Sichuan, China [15]. The dataset had large 

number of missing values. As a result, dataset boiled 

down to 495 samples with 26 features from 2008 samples 

after cleaning was performed in a meticulous way to 

retain maximum values across essential features, without 

imputation, in order to prevent unwanted bias. Finally 

through feature importance obtained from ML algorithms 

for selection, 10 features selected for training the models 

are Pulse, Systolic Blood Pressure, Body Mass Index, 

Killip Grade, Left Ventricular End-Diastolic Diameter 

(LVEDD), Brain Natriuretic Peptide (BNP), Creatine 

Kinase, Cholesterol, Creatinine Enzymatic Method and 

Potassium. LVEF is used as a target variable encoded into 

HF classes for our study. 

Among 495 patients, 212 are Male and 283 are 

Female. The number HFpEF patients having LVEF ≥ 

50% is 267, HFrEF having LVEF ≤ 40% is 117, and 

HFmrEF having 41% ≤ LVEF ≤ 49% is 111. Killip Grade 

is the only categorical feature with 163 in Class I, 248 

Class II, 74 in Class III and 10 in Class IV. Killip grade 

ranging from Class I to IV is used mainly for 

stratification of patients suffering from acute myocardial 

infarction [16]. Class I means no sign of Congestive HF, 

class II depicts the presence S3 gallop or bibasilar rales or 

both, class III reflects the presence of pulmonary edema 

and class IV patients suffer from cardiogenic shock [16]. 

 

3. Methods 

 Given the similar characteristics of HFmrEF to the 

two primary phenotypes HFrEF and HFpEF [8-11], we 

classify HFmrEF into the primary phenotypes. This task 

can be mapped to a binary classification problem. Binary 

classification can be performed through supervised ML 

techniques but it requires labelled data for validation of 

HFmrEF labels obtained from a supervised learning 

classifier trained on HFpEF and HFrEF samples. Since, 

we are exploring to resolve the uncertainty in HFmrEF 

samples, hence, obtaining the classified HFmrEF labels is 

not possible because it exactly what we want to do. 

Additionally, we use unsupervised learning when we do 

not have any labelled data and we wish to obtain the 

classes labels from hidden or unknown patterns in data 

[18]. Therefore, we proceed with a semi-supervised 

classification approach using Active Learning (AL).  

Active Learning is an ML paradigm which is useful 

when obtaining the labels for data samples is expensive 

but we still need to find labels for unlabeled data samples   

[19]. This method allows us to leverage the use of HFrEF 

and HFpEF samples by learning the label of only a 

handful data samples which have high classification 

uncertainty, and thus, obtain HFmrEF labels in a semi-

supervised way via primary phenotype class clusters.  

Another obstacle is class-imbalance of HFrEF and 

HFpEF samples in dataset. We resolved the issue of class 

imbalance by using Adaptive Synthetic Sampling 

(ADASYN) [17] to oversample the minority class HFrEF 

to 267, among primary phenotypes, initially having 117 

samples. ADASYN sampled dataset not only provides a 

balanced representation of the data distribution, but it also 

forces the learning algorithm to focus on difficult to learn 

samples. ADASYN algorithm adaptively updates the 

distribution to oversample the minority class based on 

those classes' data distribution characteristics. After 

oversampling, training dataset consisted of an equal 

number of data points in both HFrEF and HFpEF classes 

with a total of 534 samples, 11 features including the 

target variable.  

 

3.1. Model Development 

We developed two Active Learning models using: 1) 

Random Forest (RF) 2) Multi-Layer Perceptron (MLP), 

as base estimators simultaneously. Random Forest is an 

ensemble tree-based discriminative modelling algorithm 

that fits a number of decision trees on various sub-

samples of the dataset [20]. MLP is a feed-forward 

Artificial Neural Network(ANN) consisting of at least an 

input layer, a hidden layer and an output layer and can be 

used for classification and regression problems [21]. 

A Stream-based query sampling strategy was used to 

train AL models [22], in which, each unlabeled data 

sample is examined one at a time for informativeness of 

that sample. In simpler terms, the model decides whether 

it can learn enough from knowing the true label of that 

sample or not. We use classification uncertainty to 

examine this informativeness or as a “query strategy”, 

which is defined by: 

 𝑈(𝑥) = 1 − 𝑃(�̂�|𝑥) 

Where 𝑥 is the data sample to be predicted, �̂� is the 

most likely prediction and 𝑃(�̂�|𝑥) is class probability for 

that sample. In a dataset with 𝑛 features and 𝑚 samples 

we first train the base estimators on 𝑘 samples (𝑘 < 𝑚) to 
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prevent “cold start problem” [23] based on the size of 𝑚, 

where the estimator has a very high bias due to very less 

initial data samples. The rest of the (𝑚 − 𝑘) samples act 

as our unlabeled-training pool. In every learning cycle, 

we randomly draw samples for 𝑖 iterations from unlabeled 

pool and based on the query strategy, classification 

uncertainty 𝑈(𝑥) in our case, the estimator decides to 

query the label for that sample or not as per the 

uncertainty threshold 𝑢𝑐. The estimator is trained in 𝑘 

samples including the newly queried label. These learning 

cycles can be repeated while decreasing the uncertainty 

threshold by 𝛼 every time. 

 The base estimators of our AL models were initially 

trained on 𝑘 = 150 randomly drawn samples (Initial-set) 

from the training set consisting of HFpEF and HFrEF 

samples. At least 150 samples initially are necessary to 

prevent “cold-start problem” [23]. Then, for 𝑖 = 500 

iterations, randomly samples were drawn from the 

unlabeled-training pool and if the classification 

uncertainty was below 𝑢𝑐 = 0.4, the label for that sample 

was queried from the training set and the estimator was 

trained. This process of querying was repeated 4 times 

and the classification uncertainty was reduced by 𝛼 =
0.05 in each AL cycle.  

For comparing the classification performance of 

models trained on HFpEF and HFrFE, we also trained a 

Random Forest, and Logistic Regression (LR) models on 

the complete training set. 

 

3.1. Model Evaluation 

Scoring metrics selected to evaluate the model 

performance are Receiver Operator Characteristic- Area 

Under the Curve (ROC-AUC), Accuracy, Precision and 

Recall. The score were obtained by evaluating the 

performance through 5-fold cross validation (CV). The 

dataset is divided into 5 groups or folds of approximately 

equal size. One fold is held-out while the model is trained 

on the rest of the 4 folds. The process is repeated 5 times 

with different hold-out set in each run used for testing. An 

average of all the 5 scores, for all the metrics, gives us the 

overall performance of the model.  The hold-out sets were 

preserved through the pipeline and same folds were used 

to train-test all the models to ensure fairness.  

 

4. Results 

Table 1. Average Scores of Models on 5-fold CV. 

 

Model  Accuracy Roc-

Auc 

Recall Precision 

LR 85.81% 86.50% 84.59%  90.92% 

RF 88.75% 89.81% 85.82% 93.82% 

AL-RF 88.87% 88.89% 86.88% 93.26% 

AL-MLP 86.66% 85.32% 85.90% 88.15% 

 

The dataset consisted of 534 samples of balanced 

HFpEF and HFrEF classes. For each fold, the dataset was 

split into 85% training and 15% testing sets. The models 

were trained on 454 samples and tested on remaining 80 

in each run of 5-fold CV. Although the scores of AL 

model with RF estimator are similar to RF trained directly 

on all the training data, it must be noted that AL models 

were trained on average 43% lesser data as compared to 

RF. Additionally, a supervised classifier cannot be used 

to predict the labels of HFmrEF due to lack of validation 

in the absence of labelled data. Still, for comparing the 

classification performance we have considered including 

them in our study. The proposed AL based semi-

supervised method allows us to have validation from the 

classification algorithm at the time of querying the 

unlabeled data. Hence,  the AL model can learn using 

both labelled and unlabeled data, and eventually assign 

labels to HFmrEF class based on the inherent clusters in 

the data distribution as explored by Gao. M et.al [24]. 

Finally, the model classified 111 HFmrEF samples into 

66 HFrEF and 45 HFpEF. 

The clinical attributes which acted as best predictors 

are left ventricular end-diastolic diameter(LVEDD) and 

brain natriuretic peptide. These two features constituted 

0.605 importance whereas as other eight features 

combined had importance of 0.395. The feature 

importance in RF is calculated as the decrease in node 

impurity weighted by the probability of reaching that 

node and higher value depicts higher importance [20]. 

These importance values are scaled in such a way that 

their sum is 1.  

 

 5. Conclusion 

As per this study, it is quite evident that the Machine 

Learning models can perform heart failure classification 

effectively using clinical attributes. ML models can not 

only provide a data-driven answer to complex decision 

problems related to HF classification such as determining 

the prognosis of HFmrEF patients, which is being 

actively explored by the research at present. Therefore, 

the models can inherently help clinicians in making 

quicker classification and prognosis of HF patients, often 

inscrutable in HFmrEF and in borderline cases of HFrEF 

and HFpEF. This study is aimed to contribute to the 

development and research of ML models which can assist 

clinicians in making data-driven decisions. We believe 

that this study will motivate further development of ML 

models and methods to demystify HFmrEF and HF 

classification in general.  
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