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Abstract 

For the 2021 PhysioNet/Computing in Cardiology 
Challenge, we developed a deep learning model for 
automated ECG classification for both the standard 12-
lead as well as various reduced lead sets. SqueezeNet was 
leveraged in order to construct this deep learning model. 
Training inputs consisted of scalograms, which are time-
frequency representations of the absolute value of the 
continuous wavelet transform coefficients. Multiple 
preprocessing steps were necessary in order to 
accommodate the timing and resource constraints of the 
Challenge. These steps included limiting the training 
samples to only single diagnosis samples, truncating the 
signal to only the first five seconds, and only using leads I, 
II and V2. Our algorithm obtained a score of 0.30 on 12-
lead, 6-lead, 4-lead, 3-lead and 2-lead test data and ranked 
27th (among 39 teams) on 12-lead, 6-lead and 4-lead and 
ranked 25th on 3-lead and 26th on 2-lead test data. The 
main finding from this work is that though wavelet analysis 
and deep learning can produce high accuracy in a variety 
of applications, the method applied to this classification 
task is too computationally intensive and requires 
substantial improvement to make it clinically viable. 

 
 

1. Introduction 

The standard twelve-lead electrocardiogram (ECG) is a 
well-established diagnostic tool for detecting cardiac 
arrhythmias and abnormalities [1]; however, not all 
hospitals and clinics worldwide have access to this 
equipment. The 2021 PhysioNet/Computing in Cardiology 
Challenge focuses on developing automated classification 
algorithms for a variety of arrhythmias using twelve-lead, 
six-lead, four-lead, three-lead and two-lead ECGs on a 
large, diverse dataset [2,3]. Developing algorithms for 
these different lead configurations will help to determine if 
robust, accurate classification is possible with reduced-
lead ECGs. 

 
Prior work has involved various algorithms to 

reconstruct the 12-lead ECG from a reduced lead set, with 

varying degrees of success [4]. Several studies have 
demonstrated that patient-specific lead derivation was 
superior to generalized derivations [5], except in the 
presence of ischemic events [6]. Techniques such as 
Independent Component Analysis (ICA) have shown to be 
effective at reconstructing precordial leads [7]. Other 
studies have cast doubt on the ability of reduced-lead sets 
to be able to accurately reconstruct precordial leads, 
particularly when rhythm and morphological abnormalities 
are present [8]. Though there is some disagreement, the 
literature as a whole demonstrates that some leads may be 
used to reconstruct others. This finding implies that the 
information in the different leads overlaps, at least 
somewhat, which helps to encourage the current study to 
determine if accurate classification is possible with a 
reduced set of leads. 
 
2. Methods 

2.1. Preprocessing 

The Challenge requires the accurate classification of 30 
diagnoses; however, the dataset contains a total of 133 
different possible diagnoses. Therefore, there are 103 
unscored diagnoses that are present in the training set. In 
addition, it is important to note that there is not only a 
single diagnosis per patient; rather, patients have varying 
numbers of diagnoses, which further complicates the 
classification. In particular, allowing for a range of 
between one to ten diagnoses per patient, the number of 
possible combinations for 30 diagnoses is over 53 million. 
If we include the unscored diagnoses, there are over 360 
trillion possible combinations. That being said, these are 
the mathematical maxima; in practice, the number of 
combinations observed clinically is smaller than these 
maximum values. As a result, due to limitations in run-time 
imposed by the Challenge, we restricted our training set to 
only include patients with a single diagnosis from the list 
of 30 scored diagnoses. For each of these diagnoses, we 
used normal sinus rhythm as the negative case and the 
specified diagnosis as the positive case. The only exception 
was normal sinus rhythm, in which we used various other 
single diagnosis patient records as the negative cases. 
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In addition to limiting the number of patient records 
used, we truncated the signals to a uniform length of five 
seconds, adjusting for sampling rate. Five seconds was 
chosen in order to be no longer than the shortest signal 
length in the training dataset. However, this does require 
eliminating a substantial amount of data in some patients, 
since signal length ranged from five seconds to thirty 
minutes in the training set.  

The most significant limitation imposed on the dataset 
during the preprocessing steps occurred due to the 
excessively long time necessary to train the models using 
our algorithm. In particular, our submissions consistently 
ran out of the allocated time on the scoring system when 
we attempted to use all 12 leads. Our compromise was to 
only use training data from leads I, II and V2, which 
allowed our code to complete training within the 
prescribed time limits, but obviously put us at a 
disadvantage since we were only using a fraction of the 
provided data. The leads used for each of the subsets are 
shown in Table 1.  

Table 1. Leads available for training for each of the 
reduced lead subsets compared with the actual leads used 
in this method. 
 

#Leads  Available leads Leads used 
2  I, II I, II 
3 I, II, V2 I, II, V2 
4 I, II, III, V2 I, II, V2 
6 I, II, II, aVR, aVL, aVF I, II 
12 I, II, II, aVR, aVL, aVF, 

V1, V2, V3, V4, V5, V6 
I, II, V2 

 

2.2. Models 

Our approach utilizes wavelet analysis and transfer 
learning to create an individual deep learning model for 
each arrhythmia for each lead, leveraging the method 
described in [9] for the 2020 Challenge, which was based 
on the tutorial provided in [10]. We convert the ECG 
signals to scalograms, which are time-frequency 
representations of the absolute value of the continuous 
wavelet transform coefficients plotted over time and 
frequency.  

It is necessary to convert the signals to two-dimensional 
representations since the deep learning network we use for 
transfer learning, SqueezeNet, is designed for image 
classification. These two-dimensional representations are 
called scalograms; several examples are shown in Figure 
1. SqueezeNet is a well-known convolutional neural 
network, which has comparable accuracy to AlexNet [11] 
when evaluated on ImageNet data; however, SqueezeNet 

has several advantages over AlexNet, including having 
fewer parameters, being a smaller size model, having 
greater possible platform options and requiring less 
bandwidth to export the model [12].  

a.  

b.  

c.  

Figure 1. Sample scalograms for different arrhythmias: a) 
normal sinus rhythm, b) right bundle branch block and c) 
atrial fibrillation. 
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MATLAB provides a built-in implementation of 
SqueezeNet in the Deep Learning Toolbox, which is 
available in the base R2020a version of the toolbox. This 
further simplifies its use, since a support package does not 
need to be installed in order to use SqueezeNet in 
MATLAB  [13]. 

For the solver, we used the stochastic gradient descent 
with momentum (SGDM) optimizer, due to its fast, robust 
convergence [14,15]. The specific parameters used to 
construct the model are described in detail in [9]. 

2.3. Voting 

To assign a particular diagnosis, we require a minimum 
of one-third of the vote of the available leads. This design 
allows for the assignment of multiple concurrent diagnoses 
and also easily allows for additional arrhythmias to be 
included at a later time without any modification required 
to the existing classification system. However, it should be 
noted that this voting scheme was not practically used in 
our accepted submission since the maximum number of 
leads used was three. Nevertheless, we include it here since 
the confidence in the classification should be increased by 
using a voting scheme [16], so if the described method 
were applied using all twelve leads, we expect that the 
voting scheme would help to increase confidence in our 
results. 

3. Results 

A detailed explanation of the scoring algorithms used 
in the Challenge can be found in [2,3]. The scores for the 
best-performing entry for the official phase (validation set) 
are shown in Table 2. The score for the test set for the 
official phase was 0.30 overall, and 0.30 for each of the 
evaluated lead combinations. The ranking for each event in 
the official phase is also shown below in Table 2. The 
overall ranking in the Challenge for Team Eagles was 27th 
place. 
 
Table 2. Best scores for Team Eagles per lead subset in the 
Official phase of the Challenge and the corresponding 
rankings. 
 

#  of Leads  Official Phase 
(validation) 

Ranking 

2  0.372 26th  
3 0.372 25th 
4 0.372 27th 
6 0.372 27th 
12 0.364 27th 

 
 
 

4. Discussion and Conclusions 

The most obvious limitation of our approach is the use 
of only three leads for classification. Our method was too 
computationally intensive relative to the Challenge design 
to allow us to run the algorithm over all twelve leads.  In 
addition, by limiting the signal length to the first five 
seconds, we are potentially creating signals for the training 
dataset without the specified arrhythmias present, which 
would occur if the arrhythmias are only present later in the 
signal.  

In order to improve the accuracy of this method, the 
efficiency must be dramatically improved in order to be 
able to include models from all twelve leads, rather than 
only three select leads. Training the model offline would 
make this possible, but was unfortunately not allowed 
according to the Challenge rules. The voting methodology 
would likely provide more benefit had we been able to 
create models for all twelve leads, which would allow for 
a more reliable consensus decision.   

Benefits of this approach include the ability to leverage 
transfer learning and the small size of SqueezeNet. 
Nevertheless, while our results show some promise, even 
given the substantial limitations described in the methods 
section above, there is clearly significant room for 
improvement in our team’s approach, particularly with 
respect to efficiency. 
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