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Abstract 

The PhysioNet/Computing in Cardiology Challenge 

2021 focused on exploring the utility of reduced-lead 

ECGs for arrhythmia classification. Our team, 

AIRCAS_MEL1, proposed a novel multi-scale 

convolutional neural network that can classify 30 scored 

arrhythmias from 12-lead, 6-lead, 4-lead, 3-lead, and 2-

lead ECGs. The proposed network was achieved by 

multiple branch networks to effectively extract the 

pathological information from the “detail” scale to the 

“approximation” scale via a series of 2-D convolution 

kernels (filters). The backbone of each branch network was 

a carefully designed 2-D convolutional neural network 

(CNN) with residual connection and attention mechanism, 

and it can adapt to multi-lead ECGs as input. The first 10 

seconds of records from corresponding leads were 

extracted and preprocessed as inputs for end-to-end 

training, and the prediction probabilities of 30 categories 

were outputs. Finally, the proposed algorithms were 

evaluated on the hidden test set, and our classifiers 

received scores of 0.38, 0.33, 0.37, 0.43, and 0.38 (ranked 

21th, 23th, 20th, 16th, and 20th out of 39 teams) for the 12-

lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the 

hidden test set with the Challenge evaluation metric. 

 

 

1. Introduction 

The PhysioNet/Computing in Cardiology Challenge 

2020 focused on identifying 27 arrhythmias from 12-lead 

ECG recordings [1]. Building on last year’s Challenge, the 

goal of PhysioNet/Computing in Cardiology Challenge 

2021 was to explore the utility of reduced-lead ECGs for 

arrhythmia classification [2]. The participants were asked 

to build an algorithm that can classify 30 cardiac 

abnormalities from 12-lead, 6-lead, 4-lead, 3-lead, and 2-

lead ECGs. In this work, we proposed a novel multi-scale 

2-D convolutional neural network with residual connection 

and attention mechanism to achieve the target. The first 10 

seconds of ECGs records from corresponding leads were 

extracted as inputs for end-to-end training, and the 

prediction probabilities of 30 categories were the outputs 

of the models. Our final selected entry was firstly 5-fold 

cross-validated on the public training set by using the 

Challenge evaluation metric and then was scored on the 

hidden validation set by the Challenge organizers with the 

Challenge evaluation metric. Ultimately, our final selected 

entry was scored as well as ranked on the hidden test set 

with the Challenge evaluation metric. 

 

2. Methods 

2.1. Datasets and Preprocessing 

The public training set consisted of a total of 88253 

subjects from 6 different sources [3-8]. The sampling rate 

of the data set varied from 257 to 1000 Hz, the original 

ECG signals were firstly down-sampled to 100 Hz to 

reduce memory consumption and speed up model training. 

In addition, a band pass filter with a cut-off frequency of 

0.05 to 35 Hz was designed to eliminate baseline drift and 

high-frequency noise. The first 10 seconds of records were 

maintained, and then data will be truncated or expanded 

with 0 to a consistent length. Z-score normalization was 

applied to normalize signals in all leads. 

 

2.2. Model Architecture 

A network consisting of three branch networks was built.  

Like our previous work [9], multi-lead ECG signals will 

still be regarded as 2-D input with dimensions of “lead” 
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and “sample”. The input shape of each branch network was 

N*1000, N*500, N*250, where N is the number of 

corresponding ECG lead. The dimensionality reduction in 

the “sample” dimension was achieved by directly down-

sampling. Two specially designed blocks were stacked to 

form the backbone of each branch network, as shown in 

Figure 1. After the global average pooling (GAP) operation, 

the output feature maps of three branch networks were 

concatenated into the whole feature map. A fully 

connected layer was adopted to connect the whole feature 

map and the prediction probabilities of 30 categories. 

Convolution Kernel: For each branch, a large 

convolution kernel size in the dimension of “sample” was 

adopted to the first 2 blocks to enhance the perception field, 

and the size of the last 3 blocks will become (3, 9, 27), 

which can ensure that the pathological information at 

different time scales was effectively extracted. Meanwhile, 

the convolution kernel sizes in the dimension of “lead” was 

set to 1 for the first 2 blocks, and the size for the last 3 

blocks will be adjusted to (5, 5, 5), (3, 3, 3), (2, 2, 2), (1, 2, 

2), (1, 1, 2) for 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead 

models, respectively, which made the convolution filters 

just perceive the information among lead at first 2 blocks 

and adequately perceive cross-lead information at last 3 

blocks. The above-mentioned convolution kernel 

configuration ensured the equivalence of the 12-lead, 6-

lead, 4-lead, 3-lead, and 2-lead models in exploring the 

utility of reduced-lead ECGs. 

Stride: The step size of two adjacent convolutions was 

carefully controlled. The first 2 blocks were allocated a 

relatively large stride of 2 to significantly reduce the 

dimensionality of the feature map passed to the next block 

in each branch, and a stride of 1 was used in the last 3 

blocks in each branch. 

Attention Module: An attention module called Squeeze-

and-Excitation (SE) [10] was added to those blocks, which 

is a channel-wise attention mechanism. Each feature map 

will be calculated with a channel-wise weight matrix, and 

then the dot product of this matrix and the original map 

constitutes the reweighted feature map. This weight matrix 

reflects the importance of individual feature map, and these 

weights will eventually be automatically learned by the 

network in the process of gradient back-propagation.  

Activation: Relu is adopted to all layers except for the 

output layer, and the output layer uses sigmoid because 

ECG signal in the real world can contain more than one 

type of arrhythmia, so it’s a multi-label classification 

problem. sigmoid can independently map the output to a 

probability value in the range of 0 to 1. 

Loss Function: The 30 scored categories will be encoded 

in binary form as 𝑙𝑎𝑏𝑒𝑙 = [𝑙1, 𝑙2, … , 𝑙30] , and for each 

record, if their category exists in the 30 scored categories, 

the corresponding binary bit is set to 1. A weighted binary 

cross-entropy loss was designed as the optimization target, 

which is defined as follows. 

𝐶𝐸 = −
1

𝑚
∑ 𝑤𝑖 ∗ (𝑦𝑖 𝑙𝑜𝑔(ℎ𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − ℎ𝑖))

𝑚

𝑖=1

  (1) 

Where  𝑦𝑖  and ℎ𝑖 are the true label and prediction score for 
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Figure 1. The proposed model architecture. The meaning of the parameters in brackets is [filter number, filter size, 

stride size]. The values of (m, n, k) are (5, 5, 5), (3, 3, 3), (2, 2, 2), (1, 2, 2), (1, 1, 2) for 12-lead, 6-lead, 4-lead, 3-

lead, 2-lead models, respectively. 
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the category 𝑖 , respectively, and the total average is 

considered as the final loss. Weights are assigned to each 

class to alleviate the problem of class imbalance, which is 

defined as follows. 

𝑤𝑖 = 𝑙𝑜𝑔2 (
1

𝑛𝑖 𝑁⁄ + 𝑒
)                       (2) 

Where 𝑛𝑖  is the frequency of category 𝑖 , 𝑁  is the total 

number of samples, and 𝑒 is set to 0.01 to prevent division 

by 0. 

The above model was implemented using Keras with 

Tensorflow backend. 

 

2.3. Model Training 

The public training set was randomly divided into 

training and testing at a ratio of 4:1, and the training dataset 

was further divided into training and validation datasets at 

a ratio of 9:1. Adam with an initial learning rate of 0.001 

was applied for optimization. Hyperparameters of the 

network (convolution kernel size, number of blocks, etc.) 

were adjusted according to the performance on the 

validation dataset to achieve optimal performance. The 

method of reducing the learning rate with a ratio of 0.5 

during training was adopted to alleviate over-fitting. 

 

3. Results 

We evaluated our proposed algorithms through 5-fold 

cross-validation on the public training set with the 

Challenge evaluation metric. The Challenge scores on both 

the public training set, hidden validation set, and hidden 

test set that our final selected entry (team AIRCAS_MEL1) 

obtained were shown in Table 1. 

 

Leads  Training Validation Test Ranking 

12 0.721±0.002 0.63 0.38 21 

6 0.693±0.004 0.57 0.33 23 

4 0.702±0.002 0.58 0.37 20 

3 0.699±0.004 0.57 0.43 16 

2 0.683±0.004 0.56 0.38 20 

Table 1. Challenge scores for our final selected entry (team 

AIRCAS_MEL1) using 5-fold cross validation on the 

public training set, repeated scoring on the hidden 

validation set, and one-time scoring on the hidden test set 

as well as the ranking on the hidden test set. 

 

4. Discussion and Conclusions 

A comparative experiment was conducted to analyze 

the effect of convolution kernel configuration (last 3 

blocks of each branch) on the model performance elevation: 

(a) the convolution kernels with fixed sizes (3, 3, 3), the 

range of perception field were extended by multiplying the 

basic size (the value is 3 in this experiment) by 1; (b) the 

convolution kernels with variable sizes (3, 6, 12), the range 

of perception field was extended by multiplying the basic 

size by 2; (c) the convolution kernels with variable sizes (3, 

9, 27), the range of perception field was extended by 

multiplying the basic size by 3. The 5-fold cross-validated 

scores with the Challenge evaluation metric on the public 

training set were shown in Table 2. 

 

Leads  Fixed sizes 

(3, 3, 3) 

Variable sizes 

(3, 6, 12) 

Variable sizes 

(3, 9, 27) 

12 0.666 0.690 0.700 

6 0.634 0.653 0.663 

4 0.640 0.660 0.672 

3 0.629 0.656 0.672 

2 0.614 0.641 0.653 

Table 2. Comparison of 5-fold cross-validation results of 

the effect of convolution kernel configuration on model 

performance. 

 

The results showed that the performances of models 

using convolution kernels with variable sizes were better 

than those with fixed sizes. The possible reason is that the 

convolution kernels with variable sizes can capture 

pathological information at different scales. More 

importantly, the models taking convolution kernels with 

variable sizes (3, 9, 27) have the best performance among 

all models. It’s mainly because these convolution kernels 

can effectively perceive the pathological information from 

the “detail” scale to the “approximation” scale. 

In addition, an ablation study was also adapted to 

individually evaluate the performances of three branch 

models. The baseline models refer to that model taking 

convolution kernels with variable sizes (3, 9, 27) in the 

“sampling” dimension. The 5-fold cross-validation scores 

with the Challenge evaluation metric of individual branch 

models on the public training set were shown in Table 3. 

 

Leads  1st Branch 

Models 

2nd Branch 

Models 

3rd Branch 

Models 

Baseline 

Models 

12 0.657 0.664 0.643 0.700 

6 0.635 0.637 0.617 0.663 

4 0.633 0.636 0.616 0.672 

3 0.632 0.631 0.615 0.672 

2 0.615 0.621 0.598 0.653 

Table 3. Comparison of 5-fold cross-validation results of 

individual branch models using ablation study. 

 

The results showed that the performances of the second 

branch networks were best among all branch networks. It 

can be explained that the second branch networks can 

effectively capture more pathological features, or in other 

words, the majority of pathological features of arrhythmias 

concentrated on this scale range.  

In addition, an ablation study was also adapted to 

analyze the effect of the attention mechanism on the 

improvement of model performance. The baseline models 
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refer to that model taking convolution kernels with 

variable sizes (3, 9, 27) in the “sampling” dimension. The 

5-fold cross-validation scores with the Challenge 

evaluation metric on publicly available datasets were 

shown in Table 4.  

 

Leads  Baseline Models Baseline + Attention 

Models (proposed) 

12 0.700 0.721 

6 0.663 0.693 

4 0.672 0.702 

3 0.672 0.699 

2 0.653 0.683 

Table 4. Comparison of 5-fold cross-validation results of 

the effect of attention mechanism on model performance 

using ablation study. 

 

We can observe that using an SE attention layer can 

improve model performance. The general explanation is 

that the attention layer can help the network know where 

to emphasize or suppress by automatically learning the 

information flow from the above layer. 

In this paper, we proposed a novel multi-scale 

convolutional neural network for 30 arrhythmias 

classification on reduced-lead ECGs. A comparative 

experiment was conducted to analyze the effect of 

convolution kernel configuration (the last 3 blocks of each 

branch) on model performance. Results showed that 

models with variable convolution kernel sizes (3, 9, 27) 

have the best performance among all models. The 

correspondence between the pathological information of 

different scales and convolutional kernel sizes (scales) will 

be studied in future work. The performance of each branch 

model was also individually evaluated on the public 

training set, and the results showed that the second branch 

network has the best performance among all branch 

networks. In addition, the effect of the attention 

mechanism on model performance elevation was also 

analyzed, and the results showed that the introduction of 

the attention mechanism has a positive effect on the 

improvement of model performance. 

Finally, our proposed models were evaluated on the 

public training set, and we achieved 5-fold cross-validation 

scores of 0.721, 0.693, 0.702, 0.699, and 0.683 for the 12-

lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the 

public training set with the Challenge evaluation metric, 

and these models received scores of 0.38, 0.33, 0.37, 0.43, 

and 0.38 (ranked 21th, 23th, 20th, 16th, and 20th out of 39 

teams) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead 

versions of the hidden test set with the Challenge 

evaluation metric. The proposed models showed poor 

performance on the hidden test set. Some necessary 

strategies will be adopted to improve the generalization 

performances of the models in future work. 
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