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Abstract 

ECG is an essential tool for the clinical diagnosis of 
cardiac electrical abnormalities. As part of the 
PhysioNet/Computing in Cardiology Challenge 2021, 
eight and two folds from the 10-folds iterative splitting of 
public training data set were used as in-house training and 
internal validation sets. We used extracted features from 
RandOm Convolutional KErnel Transforms (ROCKETs) 
with a multilabel classification using XGBoost to predict 
cardiac abnormalities. Our team, LINC, developed an 
approach with minimal pre-processing (e.g., resampling 
data to 500Hz) and with no QRS detection or deep neural 
network design, which led to promising performance on 
the internal validation set. We didn't receive the official 
scores for the validation and test sets, because our entry 
failed during training in the official phase as we submitted 
an incomplete entry. Our classifiers received scores of 
0.504, 0.466, 0.459, 0.458, and 0.438 for the 12-lead, 6-
lead, 4-lead, 3-lead, and 2-lead versions on the internal 
validation set with the challenge evaluation metric (10 
seconds ECG). 

 
1. Introduction 

Cardiovascular disease is the leading cause of death 
worldwide resulting in significant health and economic 
burden in the United States and globally [1]. The 
electrocardiogram (ECG) is an essential non-invasive tool 
for the clinical diagnosis of cardiac diseases [2]. The 2021 
PhysioNet/Computing in Cardiology Challenge aims to 
develop automated, open-source algorithms to classify 
cardiac abnormalities from twelve-lead and reduced lead 
ECGs [3-5]. Traditional algorithms for cardiac disease 
classification require ECG signal processing (e.g., filtering 
and QRS detection), feature extraction using domain 
knowledge, and classifier development [6]. 

Furthermore, deep learning models have produced 
promising classification performance for cardiac 
abnormalities without the need for handcrafted features 
provided by domain knowledge [7-9]. However, 
developing a best-performing deep learning model 
requires a trial-and-error process to find optimum network 
architecture and parameters. A classification using features 

learned by a RandOm Convolutional KErnel Transforms 
(ROCKETs) has shown high performance in different time 
series classifications [10]. Unlike deep learning model 
development, there is no need to identify and optimize a 
network architecture when using random convolution 
kernels with classifiers. Our proposed method for the 
challenge used ROCKET features with a multilabel 
classification using XGBoost for cardiac disease 
classification. 

 
2. Material and Method 

2.1 Data 

Provided training data for the challenge is 12-leads ECG 
from six datasets: CPSC and CPSC-Extra database [11], 
INCART database [12], the PTB database and the PTB-XL 
database [13, 14], the Chapman-Shaoxing Database and 
the Ningbo Database [15, 16], the Georgia 12-lead ECG 
Challenge (G12EC) Database, and Augmented 
Undisclosed Database [3-5]. Details about the challenge 
dataset can be found in [3, 5]. Each of the ECG recordings 
has one or more labels that describe either a cardiac 
abnormality or a normal sinus rhythm. The challenge 
organizers mapped the labels to SNOMED-CT codes and 
kept the following four abnormality pairs as equivalent in 
terms of classification: CLBB and LBB, CRBB and RBB, 
PAC and SVPB, PVC and VPB. Further detailed 
information about the mapping of the labels can be found 
in [3, 5]. 
 Iterative stratification using scored labels is used to split 
the training data into ten folds [3-5] while keeping 
prevalence of scored labels across different folds. Eight 
and two folds were selected randomly as in-house training 
and internal validation sets, respectively. To evaluate 
robustness of results, model training and evaluation on 
training and internal validation set repeated two times. 
 
2.2 Method 

A block diagram of our proposed algorithm is shown in 
Figure 1. 
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2.2.1 Pre-processing 

 Using provided gain and baseline in the ECG header, 
ECG amplitude was corrected to a physical unit. 
Considering the difference in sampling frequency across 
different datasets, all ECGs were resampled to 500Hz 
whenever necessary. We extracted 10 seconds from each 
recording and applied zero padding if ECG was shorter 
than 10 seconds. 

 
2.2.2 Feature Extraction 

Transformation-based classification methods transform 
the time series (e.g., ECG) using a transformation kernel 
and then use a classifier [17]. In our proposed algorithm, 
ROCKET randomly initializes many convolutional kernels 
(10,000) and uses them to transform the data. Each kernel 
is defined by [𝑙, 𝑤!(𝑖 = 1,… . , 𝑙), 𝑏, 𝑑, 𝑝] where 𝑙 is the 
length of the kernel and 𝑤!, 𝑏, and 𝑑 are kernel weights, 
bias, and dilation, respectively. Also, 𝑝 is a boolean 
determining if padding is used or not. 

In ROCKET, two features from each convolution 
between input signal and kernel are extracted for feature 
extraction (20,000 features) followed by a classifier 
(section 2.2.3). These features are: 

1- Maximum of the convolution operation: 
𝑀𝐴𝑋 = (𝑠[𝑛] ∗ 𝑘[𝑛])																																											(1)	

2-  Proportion of positive values (PPV) 

𝑃𝑃𝑉 =
1
𝑁 ;[(𝑠[𝑛] ∗ 𝑘[𝑛])" + 𝑏 > 0]	

#$%

"&'

								(2)	

 Where ∗, 𝑠[𝑛],  𝑘[𝑛], and 𝑏 are convolution operation, 
input signal, kernel, and the bias scalar, respectively. [𝑄] 
will be 1 when Q is true and 0 otherwise. The 𝑃𝑃𝑉 
provides the proportion of the input signal correlated with 
the kernel.  
In this paper, MINIROCKET, which is a reformulated 
version of ROCKET, is used. It is shown that 
MINIROCKET with using only 𝑃𝑃𝑉 is faster than 
ROCKET while maintaining the same accuracy [18]. Of 
note, MINIROCKET map input signal to 10,000 features 
that could be used with a classifier. An extension of 
MINIROCKET for using it with multivariate datasets (e.g., 
multi-lead ECG) implemented in the sktime library was 
used in this paper [19]. 

 
2.2.3 Model Development 

We used SNOMED CT codes used in the challenge 
score, and all unscored classes were excluded from model 
development. Six percent of the total training dataset, 
consisting of 6,510 ECG records, had no cardiac arrythmia 
label since we were only classifying scored labels as 
specified by the challenge. About 40% of the training 
dataset, consisting of 32,200 ECG records, had more than 
one scored diagnosis. Therefore, multilabel classification 
was selected for ECG classification. The label powerset 
approach [20] was used to transform a multilabel problem 
into a multi-class problem—one multi-class classifier 
XGBoost [21] trained on all unique label combinations 
found in the training data for scored classes. 

 
2.3 Model Evaluation 

Thirty diagnoses were used in the challenge evaluation 
metric, and you can refer to [4, 5] for more details. An in-
house training set (eight folds) is used for model training, 
and an internal validation set (two folds) is used for model 
evaluation before submissions. In the model development, 
5 and 10 seconds of ECG were used as an input to the 
model. 

 
3. Results 

Our entry was not scored because of error in our code 
during the official phase as we failed to provide the 
"weights.csv" file in our repository. As a result, we didn't 
receive the official scores for the validation and test sets. 
Results on internal validation set for the model training on 
5 and 10 seconds of data are reported in Table 1. 
As reported in Table 2, for the model training on 10 
seconds of data, challenge scores on the internal validation 
set for 12-leads, 6-leads, 4-leads, 3-leads, and 2-leads were 
0.504, 0.466, 0.459, 0.458, and 0.438, respectively (Team: 
LINC). Additionally, F1 score for classification of each 
cardiac abnormality are calculated to identify where the 
developed models perform well and when they fail. 
Ranking by F1 score, Table 3 shows the twelve lead and 
reduced-lead model’s best and worst performing 
diagnoses, respectively. 

 

 
Figure 1. Block diagram of the proposed algorithm. 
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Leads 5 Seconds 10 Seconds  
12 0.499 0.504 
6 0.473 0.466 
4 0.459 0.459 
3 0.460 0.458 
2 0.406 0.438 

Table 1. Challenge scores for internal validation set with 
5- and 10-seconds ECG as an input. 

 
Leads Internal 

validation 
set 

Validation Test Ranking 

12 0.504 NS NS NS 
6 0.466 NS NS NS 
4 0.459 NS NS NS 
3 0.458 NS NS NS 
2 0.438 NS NS NS 

Table 2. Challenge scores for our best entry (team LINC) 
using internal validation set on the public training set, 
repeated scoring on the hidden validation set, and one-time 
scoring on the hidden test set as well as the ranking on the 
hidden test set. (NS: not officially scored because of errors 
in our code during the official phase). 

     4. Discussion and Conclusions 

We proposed a multilabel XGBoost for classifying 
cardiac abnormalities from twelve-lead and reduced-lead 
ECGs using RandOm Convolutional KErnel Transform 
(ROCKET) with 10,000 kernels for feature extraction. 
Promising results on the internal validation set on the 
public training set indicate the power of ROCKET for 
feature extraction. Creating many kernels in ROCKET 
allows it to match patterns with complex shapes and 
frequencies within ECG data [21].  

Except for the number of kernels in MINIROCKET, 
there are no other parameters to select or optimize [10, 19]. 
Therefore, cardiac abnormality classification in ECG can 
be done with no design or domain knowledge, irrespective 
of traditional and deep learning methods. As a limitation, 
features generated by MINIROCKET are not easy to be 
interpreted and future work is required to make ROCKET 
interpretable. 

In the original ROCKET paper, PPV was a more 
important feature than MAX [10], and therefore we used 
MINIROCKET in this paper [18]. However, a comparison 
between ROCKET that uses both 𝑀𝐴𝑋 and 𝑃𝑃𝑉 and 
MINIROCKET for cardiac abnormality prediction needs 
to be evaluated in future studies. 

As Table 1 shows, an increase in the length of ECG 
recording data used for feature extraction by 
MINIROCKET led to an increase in score for the twelve-
lead model and two lead model. However, a trend in the 
opposite direction is observed for the six lead and three 
lead model. Further work should be done focusing on the 
impact of the recording length for feature extraction using 

MINIROCKET to better understand its effects on 
efficiency and performance of the model. 

 
Leads Four Highest F1 

Diagnosis (F1 Score) 
Four Lowest F1 

Diagnosis (F1 Score) 

12 

SB (0.957) 

STach (0.915) 

NSR (0.899) 

PR (0.851) 

SVPB & PAC (0.083) 

Brady (0.081) 

PRWP (0.029) 

LPR (0.001) 

6 

SB (0.946) 

STach (0.906) 

NSR (0.891) 

PR (0.850) 

NSIVCB (0.060) 

IRBBB (0.025) 

LPR (0.020) 

PRWP (0.001) 

4 

SB (0.948) 

STach (0.901) 

NSR (0.884) 

PR (0.816) 

NSIVCB (0.065) 

LPR (0.040) 

Brady (0.001) 

PRWP (0.001) 

3 

SB (0.941) 

STach (0.897) 

NSR (0.872) 

PR (0.809) 

NSIVCB (0.044) 

Brady (0.001) 

LPR (0.001) 

PRWP (0.001) 

2 

SB (0.941) 

STach (0.897) 

NSR (0.872) 

PR (0.809) 

NSIVCB (0.033) 

LPR (0.020) 

Brady (0.001) 

PRWP (0.001) 

Table 3. Four abnormalities with lowest and highest F1 
score in the classification task for the different lead 
combinations are listed with the F1 score shown inside the 
parenthesis. (Sinus Bradycardia: SB, Sinus Tachycardia: 
STach, Sinus Rhythm: NSR, Pacing Rhythm: PR, 
Supraventricular Premature Beats: SVPB, Premature 
Atrial Contractions: PAC, Bradycardia: Brady, Poor R 
Wave Progress: PRWP, Prolonger PR Interval: LPR, 
Nonspecific Intraventricular Conduction Disorder: 
NSIVCB, Incomplete Right Bundle Branch Block: 
IRBBB) 

Additionally, it is observed on Table 3, that developed 
models perform well on abnormalities impacting ECG 
morphology. Comparatively, models performed poorly on 
ECG diagnoses that require interval measurements such as 
RR intervals (heart rate) and PR intervals. This might be 
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due to MINIROCKET’s focus on morphological pattern 
discovery using convolutional kernels. In the future study, 
we would like to evaluate the impact of combining 
ROCKET/MINIROCKET features with handcrafted 
features (e.g., heart rate variability and entropy). Also, the 
impact of replacing XGBoost with a linear classifier used 
in the original ROCKET paper (e.g., ridge regression 
classifier) on challenge score needs to be addressed in the 
future.  
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