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Abstract

We developed a fully deep learning model to identify
cardiac abnormalities from ECGs for the PhysioNet/CinC
2021 Challenge. Decision on different lead subsets was
based as an average voting of all available single-lead
predictions. ECG signals were bandpass filtered between
0.5 and 120 Hz, resampled at 250 Hz, cropped to 10
seconds and normalized (zero-mean, unit-variance). The
neural network architecture consisted of fifteen blocks.
Most blocks consisted in one-dimensional convolution fol-
lowed by rectified linear unit activation, batch normaliza-
tion, and dropout layers. Twelve blocks also contained
a squeeze and excitation module. A global max pooling
layer allowed for the extraction 512 features for each sig-
nal. Those features were inputted in fully connected MLP
with two hidden layers with leaky rectified linear activa-
tion and linked to the outputs through a sigmoid activa-
tion. Our team (iadi-ecg) obtained scores of 0.48, 0.47,
0.47, 0.47, 0.46 on the twelve, six, four, three, two lead
versions of the hidden challenge test set, resulting in final
ranking between the 11th, and 12th out of 39 teams). The
suggested approach had difficulties to generalize well on
the hidden test set, and future works will aim at developing
an hybrid model, as we assume that hand-crafted features
might help for generalization purpose. The proposed tech-
nique demonstrated its ability to classify ECGs even when
only two leads were available.

1. Introduction
Cardiovascular diseases are a leading cause of global

mortality [1]. The Physionet/Computing in Cardiology
Challenge 2020 aimed at classifying cardiac abnormali-
ties from 12 standard lead electrocardiograms (ECG) [2].
Traditional automated ECG classification approaches rely
on the use of handcrafted features extracted from the ECG

signals and based on domain knowledge. These features
are then fed into a classification stage [3].The domain
knowledge based features used for rhythm classification
can be divided into two categories: (i) temporal features,
which depict the regularity of the heart rate and are ex-
tracted from the instantaneous heart rate (or RR inter-
vals). These features are used to represent the level of pre-
dictability or order of these RR intervals. The presence of
an arrhythmia comes with a specific signature, which can
be identified using classical machine learning approaches.
Such features include heart rate variability (HRV) charac-
teristics [3], or predictability or irregularity of the RR in-
tervals (Sample Entropy [4], or based on a Poincaré Plot
representation). (ii) The second category of features con-
sists in the analysis of the ECG morphology aiming at
detecting pathological or abnormal electrical propagation
(Premature Ventricular Contraction, presence or absence
of P-wave (f-waves), prolonged QT interval or elevated ST
segment).

More recently, deep learning approaches have also been
proposed for the analysis of ECG signals, especially for
rhythm classification [5]. Such solutions have been able
to emerge thanks to the availability of large datasets of
physiological signals (PTB [6], PTB-XL[7], Chapman-
Shaoxing[8], CPSC 2017 [9], Ningbo [10], Georgia[2]).
Several deep learning techniques have been suggested,
starting from the use of convolutional neural networks
(CNN) [11], to the use of recurrent neural networks (such
as GRU or LTSMs) [12] in order to capture the tem-
poral evolution of the signals, and finally to the use of
attention-based mechanisms and more specifically Trans-
formers [13] which revolutionized the field of Natural Lan-
guage Processing.

Finally, as shown last year, the application of hybrid
approaches based on a combination of deep learning and
hand-crafted features allows for better classification per-
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formance, and seemingly better generalization on unseen
datasets [14].

The Physionet/Computing in Cardiology Challenge
2021 [15] aims also at the classification of cardiac abnor-
malities, but from reduced-lead ECG signals.

2. Methods

For the classification task, we decided to develop a deep
learning approach with a conventional CNN architecture
for the automated extraction of features. In the following
subsections, we will describe the data preparation, archi-
tecture of the network and how the network was optimized.

2.1. Dataset and Preprocessing

For training a cross-fold classification on five folds, each
stratified by class was performed on the challenge training
set [15]. We ensured that all the leads of the same pa-
tient were in the same split. Each ECG lead was seen as a
one-dimensional signal and considered as an independent
sample. However, to respect the maximum execution time
allowed in the challenge, the submitted model did not use
five folds, but only the one that gave the best challenge
metric.

For preprocessing of the signals, a 3rd order Butterworth
bandpass filter [0.5 and 120Hz] was applied, followed by
two notch filters at 50 and 60Hz to remove the potential
powerline interference. The signals were then resampled
at 250Hz. Only 10 seconds for each ECG signal were kept:
centered in the middle of the recording for signals longer
than 10 seconds, or zero-padded on each side for signals
shorter than 10 seconds. Each lead signal was normalized
to have zero-mean and unit variance.

2.2. Architecture

Figure 1 shows our neural network architecture. For
feature extraction, 15 convolution blocks were used; each
block composed of a convolution layer, followed by a
batch normalization, and a rectified linear unit. The 3rd,
4th, 5th, 7th, 12th blocks were followed by an average
pooling with a stride of 2. From the 4th convolution layer
on, each block finished with squeeze and excitation (SE)
modules [16] [17]. A global max pooling was finally ap-
plied in order to extract 512 features from each 10-second
ECG lead. Classification consisted in two fully connected
layers of output dimensions 128, with leaky rectified lin-
ear units as activation. A final fully connected layer with
output dimension 26 was used for classification. The net-
work output consisted of the logits, as the sigmoid activa-
tion corresponding to the classifier’s output probabilities
and prediction was incorporated within the loss function.

Figure 1. Left: Squeeze and Excitation (SE) block. Right:
global architecture. To describe tensor shapes in SE block,
B, C, N stand for Batch, Channels, number of Samples.

2.3. Loss and optimizer

The loss was a combination of a binary cross-entropy
bceloss and a soft-dice loss dcloss. For a given sample
i, let xi be the preprocessed ECG signal, F = (Fc)c the
network output, Fc being the network output (logit) for
class c. Let yci be the label of the sample i on class c,
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and ŷci the predicted label. With σ the sigmoid function:

bce(Fc, xi, y
c
i ) = −ωc

i [pc.y
c
i ln(σ(Fc(xi)))+

(1− yci ) ln(1− σ(Fc(xi)))] (1)

To deal with class imbalance, the weights of positive
samples were adjusted for each class as pc = 1−d(c)

d(c) with
d(c) the rate of occurrence for class c on the whole training
dataset.

The sample weighting wc
i parameters were also ad-

justed to take into account the heterogeneity between the
databases (either due to a different patient population or
a different annotation process) and to favor sparse model
outputs. The contribution of a class c to the loss for a
given sample was null if this class did not occur in the sub
database where the training sample was from. A more im-
portant contribution to the loss was given to the sample i if
it only had a few positive outputs. Hence ωc

i =
bci

max(ni,1)

with ni the number of positive labels in the vector yi, and
bci = 1 if the class is present in the database where the
training sample i was drawn, or bci = 0 otherwise. The
final weighted binary cross entropy is given by

bceloss(F, xi, yi) =
∑
c

bce(Fc, xi, y
c
i ) (2)

A second term in the final loss was based on the dice
coefficient [18] using a soft version as follows :

dcloss(F, xi, yi) = 1− 2
1 +

∑
c σ(Fc(xi)).y

c
i

1 +
∑

c σ(Fc(xi)) +
∑

c y
c
i
(3)

The final loss combining (2) and (3) was given by

loss(F, xi, yi) = bceloss(F, xi, yi) + dcloss(F, xi, yi).
(4)

Different optimization schemes were tested including
Stochastic gradient descent (SGD) and Adam optimizers
with a constant learning rate. Optimal learning rates were
found via grid search between 2.10−5 and 1.10−3 and the
best learning rate was at 1.10−4.

A SGD with cyclic learning rate update was also
tested and finally chosen for the official submission. The
learning-rate was updated at every batch iteration using a
cyclic update policy [19]. Cycles were triangular, varying
between 2.10−5 and 1.10−3, with a period of 2000 itera-
tions. Batch size was set at 64, and the final model was
trained over 50 epochs. The different models were trained
on several workstations with different GPUs (Nvidia A100
and Titan XP). Training and testing were performed in
docker containers with memory limited to 60 GB to repli-
cate the Challenge server environment.

2.4. Postprocessing

After training of the network a calibration step was per-
formed. The decision threshold for each class was adjusted
in order to maximize the final challenge metric on the val-
idation fold.

To deal with the different sets of reduced leads, a sim-
ple voting of the single lead-based outputs was performed.
The output probabilities of the classifier were averaged
over all the provided leads for each reduced set (2-, 3-, 4-,
6- or 12-leads). The final classification was obtained using
the previously described decision thresholds.

3. Results

The additional value of the custom loss function was
demonstrated by 5-fold cross-validation scores assembled
in table 1 with a 0.03 improvement in the Challenge metric
compared with a weighted BCE.

Models Score
bceloss,SGD cyclic lr 0.619 ± 0.004

loss, SGD constant lr = 10−4 0.643 ± 0.007
loss, Adam constant lr = 10−4 0.646 ± 0.001

loss, SGD cyclic lr, without SE modules 0.656 ± 0.001
loss, SGD cyclic lr (submitted entry) 0.652± 0.004

Table 1. Challenge scores during 5-fold cross-validation
for different models on the training set.

Table 2 gives the scores obtained by our entry during
Cross-Fold validation, and on the validation and test sets.

Leads Training Validation Test Ranking
12 0.66 0.59 0.48 12

6 0.64 0.58 0.47 11
4 0.64 0.57 0.47 11
3 0.64 0.57 0.47 11
2 0.63 0.56 0.46 11

Table 2. Challenge scores for our selected entry (team
iadi-ecg) obtained on the validation and test sets.

4. Discussion

During this competition, several avenues of research
have been explored to optimize the performance of the
deep learning models. From Table 1 the main improve-
ment factor came from the use of the combined DICE and
BCE loss, and the use of the SGD optimizer with a cyclic
learning rate.

The proposed model was trained on single lead signals
and the multilead prediction was only an average voting,
not considering the lead positions or inter-leads relation-
ships. The average drop of 0.2 on validation and 0.1 on
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test between the lead subsets and the 2 lead score suggest
the final classifier remained able to use only few available
leads. This suggests that despite limitations a deep learn-
ing based classifier could still learn lead-independent fea-
tures to predict abnormalities from ECG.

The results of Table 2 reflect the difficulties of the cur-
rent approach to generalize on a different hidden test set,
with an average drop of 0.10 on the challenge metric be-
tween the hidden validation set and the test set. There is
still some room for improvement in the settings of some
hyperparameters, for example in the weighting of the loss,
either refining the weighting between DICE and BCE or
better accounting for class imbalance and dataset hetero-
geneity in the DICE loss term. The use of a representation
learning approach in order to initialize the network weights
has also shown to yield better performance than using a
random initialisation, and such technique has already been
suggested for ECG analysis [20]. It would be interesting
to assess in future works how such a technique would help.
Finally, other techniques such as the use of an ensemble of
models or the use of an hybrid model with added hand-
crafted features were also shown to be of added value, but
such solutions were not investigated here either due to a
lack of time or due to the limited available training time on
the Challenge server.
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