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Abstract

Arrhythmia automatic analysis techniques provide
convenience for the prevention and diagnosis of cardiac
disease. Aiming at classify cardiac abnormalities into
27 classes with either 12-lead, 6-lead, 4-lead, 3-lead
or 2-lead multi-label ECG recordings, we develop a
deep 1-Dimensional Convolutional Neural Network (1D
CNN) with residual block and squeeze-and-excitation
(SE) attention mechanism (namely 1D RANet). First,
we introduce residual block and SE attention block into
1D CNN to extract deep features adaptively and avoid
vanishing gradient or network degradation. Second,
to improve the robustness, we use data augmentation
techniques such as band-pass and wavelet-based filter,
noise addition, time-frequency switch and so on. For the
convenience of training, all recordings are cropped or
padded to 60 seconds with resampled rates of 300 Hz.
Our classifiers received challenge scores of 0.73, 0.53,
0.59, 0.57 and 0.47 for the 12-lead, 6-lead, 4-lead, 3-lead,
and 2-lead versions of the public training set, 0.56, 0.54,
0.56, 0.54 and 0.55 for the hidden validation set and 0.52,
0.49, 0.51, 0.50 and 0.49 for the hidden test sets (Team
name: Proton). However, our entries did not rank since we
missed the preprint submitting deadline of the Computing
in Cardiology Conference.

1. Introduction

Cardiovascular disease is one of the most serious
diseases that endanger human health [1]. Therefore,
a rapid and accurate diagnosis of arrhythmia is of
great importance for the prevention and treatment of
heart disease. The electrocardiogram (ECG) have been
widely used to cardiovascular disease diagnosis as a
physiology signals generated by the heart’s excitement.
The PhysioNet/Computing in Cardiology Challenge 2021
encourages challengers to design effective multi-label
ECG arrhythmia classification algorithm of multi-lead
ECG signals including 12, 6, 4, 3, and 2 leads [2, 3].

In recent years, with the rapid development of artificial
intelligence theory, researches on arrhythmia detection
techniques based on machine learning have emerged one
by one. The arrhythmia detection algorithm based on
machine learning mainly consist of pre-process of ECG
signals, feature extraction and arrhythmia classification.
However, the feature extraction methods severely depend
on the artificial experience and expert knowledge, which
results in the limitation of arrhythmia classification. The
ability of deep learning to adaptively extract features
provides new solution to such problems. Compared with
the traditional shallow models, deep neural networks like
convolutional neural network (CNN) [4] and recurrent
neural network (RNN) [5] are able to adaptively extract
deep features with strong representation ability from
raw data, which avoids the problem such as insufficient
or redundant of extracted hand-crafted features and
achieves good performance in arrhythmia detection as
well. For example, Pourbabaee et al. [4] proposed an
end-to-end atrial fibrillation detection method based on
CNN, and verified the strong representation ability of
deep features compared with the traditional hard-crafted
features. Hunnun et al. [6] and Rajpurkar et al. [7]
proposed a 34-layer CNN with residual blocks (ResNet34)
algorithm for arrhythmia detection of single-lead ECG
signals and obtained good performance. Wang et al.
[8] came out with a 12-lead ECG arrhythmia detection
algorithm based on 1-dimensional (1D) CNN.

Inspired by the researches above, we proposed
an end-to-end multi-lead ECG multi-label arrhythmia
detection method based on 1D CNN with residual
blocks and attention mechanism (1D RANet). Detailed
information of the proposed method is described in Section
2.

The database used in Cardiology Challenge 2021
including the CPSC database [9], the INCART database
[10], the PTB database [11], the PTB-XL database [12],
the Chapman-Shaoxing Database [13], and the Ningbo
Database [14]. Each ECG recording of the above dataset
has one or more labels that describe cardiac abnormalities.
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2. Methods

2.1. Description of dataset

The dataset used in Cardiology Challenge 2021 have
been presented in Section 1. And for more details, the
challengers are required to train five models corresponding
to the ECG recording of 12-lead, 6-lead, 4-lead, 3-lead
and 2-lead. The reduced-lead ECG recordings are obtained
according to the references [2,3,15].

In this paper, we trained five models based on the
proposed basic model 1D RANet using the data of different
leads, respectively. Therefore, we only take the 12-lead as
an example to display our work on the data preprocessing,
model construction and experiment results.

2.2. Data preprocessing

The sampling rate of these different datasets is different.
For the convenience of the next data processing, we
resampled the data at 300 Hz.

2.2.1. Data augmentation

To enhance the diversity of samples and improve
the robustness of model, we adopted data augmentation
techniques including band-pass filter (0.05 Hz - 100
Hz), noise addition, time-frequency transform and data
selection. Take one of the samples (JS26892) as an
example, Figure 1 provides an intuitive display about
the raw ECG sample and the corresponding samples
after applied data augmentation. Figure 1 (a) means
the raw ECG signals in time domain, and Figure 1 (b)-
(d) represent the filtered signal, the signal added random
noise and the spectrum after fast Fourier transform (FFT)
respectively. When the signal length is more than 60s, we
cut it into multiple pieces of data with a sliding window of
10s, and then randomly select one of them for training. It
is obvious that the data augmentation is able to enlarge the
diversity of samples and provide more useful information
which contributes to improve the robustness of model.

2.2.2. Data segmentation

For the convenience of model training, we treat all ECG
data to the same length. According to out statistics, the
length and number of ECG signals are shown in Table
1. Although the most ECG signals length is less than
20s, we have verified that our model can obtain the best
performance when the length of data is set 60s. This
may be due to the data of 20s discarding too much useful
information when training the model. Thus, we finally
process the data into 60s. Specifically, the signals less than
60s are padded by zero into 60s, the signals more than 60s
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Figure 1: Illustration of data and the corresponding data
after data augmentation

Table 1: The length and number of ECG signals.

Length <20s <30s <60s <180s 30min
Number 85549 1194 878 558 74

are processed by the data selection method mentioned in
Section 2.2.1.

2.3. Model construction

This paper introduces residual blocks and SE attention
mechanism [16] into the 1D CNN, the network structure is
shown in the left of Figure 2. The SE attention block and
residual block are shown in the right of Figure 2. In order
to simplify model training and avoid over-fitting, we add a
Dropout layer after each Basicblock, which is set to 0.2.

Figure 2: Structure of proposed model
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3. Results

3.1. Experiment setting

This paper firstly conducts data resampling and data
segmentation, and then uses multi-lead ECG signals with
a sampling rate of 300 Hz and a length of 60s (18000
sampling points) as the input of the proposed model.
Finally construct an end-to-end 1D CNN with attention
mechanism and residual block which classifies the ECG
signals into 27 categories, including 26 arrhythmia types
and sinus rhythm.

In the experiment, we divided the dataset provided into
training set, validation set and test set in proportion of
8:1:1. During the model training, the batch size is set to
64, learning rate is set to 0.01. The model is optimized by
stochastic gradient descent algorithm with sigmoid active
function and cross-entropy loss. The model proposed
in this article is built under the Pytorch framework and
trained on NVIDIA RTX 2080Ti GPU.

3.2. Experiment results

To evaluate the method proposed, we use accuracy,
F-measure and the challenge metric as evaluation
indictors. The comparative results on the public dataset of
12-lead model are shown in Table 2. The challenge metric
results of different leads obtained by the proposed method
(1D RANet) are shown in Table 3.

4. Discussion and Conclusions

4.1. Discussion

It is easy to see from Table 2 and Table 3 that
the proposed method 1D RANet outperforms the other
comparative methods in terms of accuracy, F-measure and
challenge metric, which indicates that residual blocks and
attention mechanism can improve the effectiveness of 1D
CNN. Meanwhile, it also shows that the data augmentation
techniques can promote the generalization performance of
the models.

To further identify the effectiveness of the SE attention
mechanism in the proposed method, we visualize the
extracted 512-dimentional deep features from our method
and the model without SE module by using t-SNE
algorithm [18]. For easy observation, we only choose
atrial flutter (AFL), complete right bundle branch block
(CRBBB), sinus bradycardia (SB), sinus tachycardia
(Stach) four kinds of arrhythmias and sinus rhythm (NSR)
from the given 27 classes to visualize as shown in Figure
3. Figure 3 (a) visualizes the features extracted from
the proposed method and Figure 3 (b) shows the features
extracted from 1D CNN without SE attention mechanism.

Table 2: The comparative results of 12-lead model on
validation set. The Challenge metric score is obtained from
the testing set by splitting the public dataset provided by
the committee.

Accuracy F-measure Challenge
metric

ResNet34 0.42 0.58 0.71
ResNet34 with focal loss [17] 0.42 0.59 0.70
Resnet34 with data augmentation 0.46 0.61 0.72
1D RANet with 20s segments 0.54 0.63 0.72
1D RANet (proposed method) 0.50 0.67 0.73

Table 3: Challenge scores for our final selected entry (team
Proton) on the testing set divided from the public dataset,
repeated scoring on the hidden validation set, and one-time
scoring on the hidden test set.

Leads Our testing set Hidden validation Hidden test Ranking1

12 0.73 0.562 0.52 N/A
6 0.53 0.54 0.49 N/A
4 0.59 0.56 0.51 N/A
3 0.57 0.54 0.50 N/A
2 0.47 0.55 0.49 N/A

1 Our entries did not rank since we missed the preprint submitting deadline
of the Computing in Cardiology Conference.

The axis in Figure 3 represents the 3-dimentional features
obtained by t-SNE dimension reduction. From Figure 3 we
can see that SE attention mechanism contributes to extract
deep features with stronger representation by learning the
importance of different channels.

4.2. Conclusions

In conclusion, this paper proposed a multi-label
arrhythmia classification algorithm of multi-lead ECG
signals based on 1D CNN with residual and SE
attention mechanism. The method 1D RANet firstly
improves the performance of deep neural network by
introducing residual block to tackle with the problems
of vanishing/exploding gradient. Secondly, it learns
the importance of different channels through the SE
attention mechanism to help extract deep features with
strong representation which is contributes to arrhythmia
classification of ECG signals. Finally, the method
improves the generalization ability of the model by
increasing the diversity of samples through band-pass
filtering, adding noise and other data augmentation
techniques.

At present, the automatic detection of multi-label
arrhythmia of multi-lead ECG has attracted much
attention. In the future research, we will consider how to
combine the artificial features and deep features to design
a more efficient arrhythmia detection model.
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Figure 3: Feature visualization: (a) proposed method, (b)
1D CNN without SE module
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