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Abstract

The goal of the proposed work is to classify the ECG
signals into 24 different classes using the data obtained
from the 12 Lead ECG signal. As part of the Phys-
ioNet/Computing in Cardiology Challenge 2020, an ap-
proach based on 1 Dimensional - Convolutional Neural
Network (1D-CNN) with class dependent threshold was
developed for identifying cardiac abnormalities from 12-
lead electrocardiogram (ECG). The method uses 1D-CNNs
stacked in parallel with each CNN tuned to identify one of
the classes. Each of these CNNs have same architecture
comprising of convolutional layers, batch normalizations,
activation layers and a dense layer with added regulariza-
tions and dropouts. The class dependent threshold gives
the benefit of optimizing the model for each of the class
individually without the need of training separate models
for each category. This property of the network makes it
ideal for real time setup where one inference run of this
model is sufficient for multi-label and multi-class classifi-
cation. The class dependent thresholds were chosen based
on the ROC curve for each of the class respectively. Our
approach achieved a challenge validation score of 0.342,
and full test score of 0.077, placing our team (AI Strollers)
32 out of 41 in the official ranking.

1. Introduction

According to the World Health Organization, cardio-
vascular disease is one of the leading causes of mor-
tality in the world [1]. Different cardiac diseases have
different causes and symptoms, and are generally diag-
nosed by measurement of electrocardiogram (ECG) [2, 3].
ECG diagnosis is considered as an important tool for
screening and classification of various abnormalities. The
PhysioNet/Computing in Cardiology Challenge 2020 ap-
proached this problem by automating the diagnosis and
calling for open-source approaches used for classifying
cardiac abnormalities from 12-lead ECGs [4, 5]. Our best
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entry in the Challenge[5] implemented 1D CNN based net-
work with class dependent threshold for this task.

2. Method

The sections below describe in detail the approach used
for the task. This involved pre-processing of data (Sec.
2.1), designing & training 1D CNN model (Sec. 2.2) and
finally classifying the samples (Sec. 2.3).

2.1. Preprocessing

1. The sampling rate of all signals in the dataset is same
(500 Hz), hence time resampling of data was not required.
2. The signals in the dataset have different amplitude reso-
lutions viz. 200/mV, 4880/mV, 1000/mV. Each signal was
converted to physical units (mV) by dividing it with re-
spective analog-to-digital gain before feeding it as input to
the model.
3. The number of time samples for ECG signals in the
dataset vary from 2500 to 462600. It is important to ho-
mogenize the size of input data before consuming it in a
model. The mean length of signals was computed and was
found to be ∼7700. Approximately 95% of the signals
have length less than 10000. Hence, the signals that have
length greater than 10000 were trimmed and those with
size less than 10000 were ‘wrap’ padded at the end (signal
was repeated till its vector length reached 10000).

2.2. Model Architecture

According to the scoring guidelines, there are only 27
diagnosis that are scored while the others are ignored in
the challenge metric [5]. It seems prudent to focus only
on these 27 diagnosis as this will lead to simpler model,
compared to one that recognizes all 111 diagnosis. Out of
these 27 diagnosis, 3 pairs of diagnosis are scored equally,
hence these were combined pairwise to give a single diag-
nosis label for the pair. The following diagnosis have same
scoring:
• CRBBB and RBBB (majority)
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Figure 1. Proportion of diagnosis (in %) for each of the 24 classes (27 mapped to 24) with respect to total diagnosis in
each subset created from the annotated data. Total number of samples in each set is mentioned in legend.

• SVPB and PAC (majority)
• PVC and VPB (majority)
For each of the diagnosis pairs that are identically scored,
‘majority’ tag in above list indicates the class that is rel-
atively in majority with respect to other class. Since both
classes in each pair are considered equivalent, sample from
any of the class in the pair is tagged with the majority class
label. So, CRBBB diagnosis is tagged as RBBB, SVPB
as PAC and PVC as VPB. Thus, our modelling is further
simplified, now model needs to distinguish only among 24
diagnosis. These 24 categories are depicted on x-axis of
the bar plot in Fig. 1.

After the above process, diagnosis labels of each sample
were converted into a 24 dimension binary vector (using
one hot encoding, allowing vectors with multiples 1s for
samples that have multi-class labels). This 24 dimension
vector corresponding to each sample becomes our target
for training the model.
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Figure 2. The architecture involves stacking 24 identical
networks in parallel, each model receives same input and
returns a scalar value from 0 to 1. The final output is ob-
tained by concatenating these scalars into a 24 dimension
vector. Here, each of the 24 boxes shown are models hav-
ing architecture as depicted in Fig.3.

The annotated dataset contains a total of 43101 samples
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BN = Batch Normalization, k = kernel, s = stride, f = filters, Drop = Dropout

Figure 3. CNN Architecture for multivariate time series
classification model that is replicated 24 times in parallel to
obtain the final model. Twelve input channels correspond
to the 12 leads of the ECG signal and the length of input
signal is 10000.

while only 37619 samples have diagnosis that belong to
one or more of the 27 scored classes (now mapped to 24
classes). The samples that do not have any diagnosis be-
longing to these 24 categories were removed for further
analysis. The aim is to reduce the complexity of model by
skipping learning of samples that do not belong to the scor-
ing category. Thus, 5482(=43101-37619) samples were re-
moved completely from the dataset and these samples were
not involved in our training, validation and test set. After
removing these 5482 samples, the data was randomly split
into training, validation and testing. The number of sam-
ples in each of these sets is mentioned in Fig. 1. It is
important to mention again that this split of annotated data
for training, validating, testing is at our end and it is not
related to the test datasets that was used by challenge or-
ganizers for leaderboard scores. Since the above sets have
been created randomly, a check needs to be done to make
sure whether all these sets represent the population distri-
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Table 1. Metrics by class on challenge validation set along with class dependent thresholds applied to model output for
deciding diagnosis. AUROC: Area Under Receiver Operating Characteristic, AUPRC: Area Under Precision-Recall Curve.

SNOMED CT Code Abbreviation Threshold AUROC AUPRC F-measure
270492004 IAVB 0.6445 0.603 0.107 0.155
164889003 AF 0.4137 0.829 0.418 0.288
164890007 AFL 0.5644 0.519 0.018 0.034
426627000 Brady 0.5307 0.919 0.001 0.000
713427006, 59118001 CRBBB, RBBB 0.7846 0.769 0.197 0.326
713426002 IRBBB 0.4686 0.581 0.037 0.000
445118002 LAnFB 0.3369 0.432 0.051 0.162
39732003 LAD 0.3915 0.852 0.374 0.486
164909002 LBBB 0.3692 0.936 0.623 0.352
251146004 LQRSV 0.6249 0.704 0.059 0.067
698252002 NSIVCB 0.3655 0.591 0.019 0.030
10370003 PR 0.2081 0.455 0.001 0.000
284470004,63593006 PAC, SVPB 0.6115 0.513 0.071 0.129
427172004,17338001 PVC, VPB 0.6526 0.497 0.026 0.055
164947007 LPR 0.2325 - - -
111975006 LQT 0.7803 0.562 0.126 0.177
164917005 QAb 0.4344 0.687 0.062 0.072
47665007 RAD 0.2594 0.613 0.009 0.011
427393009 SA 0.3053 0.620 0.048 0.072
426177001 SB 0.7778 0.623 0.165 0.266
426783006 SNR 0.5129 0.799 0.394 0.359
427084000 STach 0.4635 0.827 0.265 0.287
164934002 TAb 0.6148 0.600 0.205 0.325
59931005 TInv 0.6331 0.538 0.072 0.127

bution w.r.t. diagnosis. Also, it should be ensured that
there are sufficient samples of minority classes in all the
sets. So, proportion analysis of complete, training, valida-
tion and testing set was done before utilizing the data. The
percentage of diagnosis was calculated for each of the 24
classes in a set w.r.t. the total number of diagnosis present
in the set. The result of this analysis is shown in the form
of bar plot in Fig. 1. It could be inferred from the graph
that distribution of diagnosis in subsets is roughly same as
that in population.

After creating subsets for training, validation, testing
and deciding on representation of target classes, a CNN
model was planned accordingly. We decided to use a
multi-path network, consisting of 24 paths, as base archi-
tecture of the model. Each path in such a model must cor-
respond to a different class of diagnosis. This structure
consisting of 24 models (one for each diagnosis) stacked
in parallel, is shown in Fig. 2. Each of these models will
receive input from all 12 channels (truncated or padded till
10000 samples) and will output a single scalar value rang-
ing from 0 to 1. This value indicates the probability of a
sample belonging to diagnosis mapped by the model. The
outputs of all the 24 models are concatenated to obtain a 24

dimension probability vector. The target for this probabil-
ity vector is 24 dimension one hot encoded vector (created
from diagnosis labels as explained earlier).

The architecture of each of these 24 models is exactly
same and is shown in Fig. 3. The model was trained
with cross entropy loss, learning rate of 1e-4 and Adam
[6] as an optimizer. The different parameters used were
β1=0.99, β1=0.9, ε=1e-7, decay=0.0001, amsgrad=False
and clipvalue=0.5 (to restrict the exploding of the gradi-
ent). Kernel regularizers l1(=1e-7) & l2(=1e-7) and bias
regularizer l2(=1e-7) were used to reduce overfitting of the
model[7]. The total number of parameters in the model
are 3,800,520 which consists of 3,778,968 trainable pa-
rameters and 21,552 non-trainable parameters. The net-
work was developed, trained, validated and tested using
Keras[8] with Tensorflow[9] as backend. The model was
trained for 100 epochs with batch size of 128. The model
that gave best validation loss during the training was re-
tained as the final model. All computations were carried
out on a Linux workstation with Intel Xeon Silver 4110
CPU with 2.10 GHz clock speed, having 128 GB RAM
and a TITAN RTX GPU with 24 GB memory. Each epoch
took approximately 210 seconds on this machine.
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Table 2. Results of classification for the CNN model on different sets of challenge test data
Dataset AUROC AUPRC Accuracy F-measure Challenge metric
Validation 0.625 0.124 0.000 0.140 0.342
Test 1 0.783 0.437 0.001 0.117 0.212
Test 2 0.622 0.135 0.000 0.153 0.359
Test 3 0.629 0.197 0.000 0.144 0.096
Full Test 0.599 0.136 0.000 0.142 0.077

2.3. Classification using the Model

Once the model was trained, Receiver Operating Char-
acteristic (ROC) and Area Under Curve (AUC) were com-
puted on the training set for each of the 24 classes. Using
the ROC, an optimal threshold was found for each class,
this threshold maximized the difference between True Pos-
itive Rate (TPR) and False Positive Rate (FPR) for that
class. It is pertinent to mention that these thresholds were
decided based on model output and labels of the training
set. For inference, the optimal threshold for each class was
used (after getting probabilities from model) to return the
diagnosis for a sample. The optimal thresholds are given
in Table-1 corresponding to each of the 24 ECG diagnosis.
Thus, our deep learning based auto-diagnosis model has
two parts viz. a trained deep learning model and a table
containing optimal threshold for each class.

3. Results

Various metrics on challenge test sets were calculated on
the results obtained using the final model. The correspond-
ing results for AUROC, AUPRC, F-measure and challenge
metric are given in Table-1 and Table-2. Our model gave
0.342 and 0.077 as the challenge metric value on valida-
tion set and full test set. On these scores, our team (AI
Strollers) was ranked 32 out of 41 in the official ranking.

4. Discussion and Conclusions

According to score and ranking on leaderboard, there
seems plenty of scope for improvement in model. There
are some experiments with respect to pre-processing,
hyper-parameter tuning, increasing epochs etc. that could
have improved the results but were not performed due to
time constraint. In conclusion, this approach of having
1D-CNNs in parallel with class dependent threshold, can
be termed as a ‘start in the right direction to accomplish
the goal of automating the ECG diagnosis’.
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