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Abstract

Correct interpretation of the electrocardiogram (ECG)
is critical for the diagnosis of many cardiac diseases, and
current computerized algorithms are not accurate enough
to provide automated comprehensive interpretation of the
ECG. This study aimed to develop and validate the use of
a pre-trained exponentially dilated causal convolutional
neural network for interpretation of the ECG as part of
the 2020 Physionet/Computing in Cardiology Challenge.
The network was pre-trained on a physician-annotated
dataset of 254,044 12-lead ECGs. The weights of the pre-
trained network were partially frozen, and the others were
finetuned on the challenge dataset of 42,511 ECGs. 10-
fold cross-validation was applied and the best perform-
ing model in each fold was selected and used to con-
struct an ensemble. The proposed method yielded a cross-
validated area under the receiver operating curve (AU-
ROC) of 0.939 ± 0.004 and a challenge score of 0.565 ±
0.005. Evaluation on the hidden test set resulted in a score
of 0.417, placing us 7th out of 41 in the official ranking
(team name UMCUVA). We demonstrated that an ensem-
ble of exponentially dilated causal convolutional networks
and pre-training on a large dataset of ECGs from a dif-
ferent country and device manufacturer performs excellent
for interpretation of ECGs.

1. Introduction

The 12-lead electrocardiogram (ECG) is a fundamental
diagnostic tool in clinical practice and used to diagnose a
wide range of possibly life-threatening cardiac abnormal-
ities. Automated diagnosis of the ECG could be of great
support in clinical practice, especially when expert knowl-
edge is not readily available.

Conventional computerized algorithms that use hand-

crafted features have not been able to reach sufficient ac-
curacy for automated comprehensive ECG interpretation
and overreading by a physician remains necessary [1]. Re-
cent studies have shown promising results using deep neu-
ral networks (DNNs) for comprehensive automated ECG
interpretation [2–4]. However, these approaches use pro-
prietary datasets or limited publicly available datasets,
provide no comparison with existing architectures and
only classify a small selection of diagnoses. The Phy-
sioNet/Computing in Cardiology Challenge (CinC) 2020
aimed to address this problem by providing a large dataset
of publicly available ECGs, in which participants submit-
ted open-source algorithms which were compared on a hid-
den test set [5].

Different DNN architectures have been proposed for the
automated interpretation of ECGs, but exponentially di-
lated causal convolutions have never been used [4]. These
convolutions have the advantage that they take the tempo-
ral nature of the ECG into account, while efficiently learn-
ing long-range dependencies in time series [6]. Further-
more, other works have discussed the prospects of using
large task-related ECG datasets to pre-train ECG classi-
fiers for transfer learning [7]. In this study, we propose a
combination of transfer learning and an exponentially di-
lated causal convolutional network for automated compre-
hensive interpretation of the ECG.

2. Methods

2.1. Challenge Data

The training and hidden testing datasets combined raw
ECG data from five different sources in China, Russia,
Germany, and the United States and are described in de-
tail in the the PhysioNet/CinC 2020 challenge paper [5].
The training dataset consisted of 42,511 12-lead ECGs,
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of which 32,181 ECGs were 10-second length, while the
remaining 10,330 ECGs were varying between 6 and 60
seconds. For the latter, only the first 10 seconds were
extracted for ECGs with a duration greater than 10 sec-
onds. ECGs with a length shorter than 10 seconds were
zero-padded per training batch. All ECGs were resam-
pled to 500 Hz using linear interpolation. All ECGs were
interpreted and annotated using one or more of the 111
SNOMED-CT codes for ECGs. For the challenge only the
27 most prevalent codes were used, of which three pairs
regarding right bundle branch block, premature atrial con-
traction, and premature ventricular contractions, were con-
sidered equivalent. Therefore, 24 classes were used for
training.

2.2. Pre-training Data

We investigated the application of transfer learning us-
ing a dataset acquired by the University Medical Center
Utrecht (UMCU). The dataset consisted of 254,044 500
Hz-sampled 10-second 12-lead ECGs from patients be-
tween 18 and 85 years old, recorded using the General
Electric MAC 5500 Resting ECG acquisition and analy-
sis system (GE Healthcare, Chicago, IL, USA). All ECGs
were systematically annotated by a physician as part of the
regular clinical workflow. These free text annotations were
structured using a text mining algorithm as described be-
fore and mapped to the 24 classes in the challenge dataset
[3]. We constructed a randomly sampled UMCU test
dataset of 16,698 ECGs to evaluate the resulting DNN dur-
ing the pre-training process. Table 1 lists the 24 classes and
the corresponding number of ECGs present in the CinC
and UMCU training dataset.

2.3. Model Architecture

We constructed a deep convolutional neural network
with 1-dimensional exponentially dilated causal convolu-
tions (Causal CNN, Figure 1). Based on the method de-
scribed by Franceschi et al. [8], we built an architecture
composed of several causal convolutional blocks, trans-
forming the 12× L-sized ECG data to 216 L-dimensional
feature maps, where each point in a feature map is based
on a history of 383 sample points, including itself. Sub-
sequently, we employ a 1-dimensional adaptive max pool-
ing layer to squeeze the temporal dimension resulting in
a 216-dimensional representation, followed by a 216-to-
24 linear layer with sigmoid activation to allow for multi-
label classification. Each causal convolution block con-
sists of a combination of causal convolutions, weight nor-
malizations, leaky ReLUs and residual connections. The
causal convolution is a result of first applying a convolu-
tion and thereafter truncating the output, to remove future
timepoints. The residual connection is only used when up-

Diagnosis UMCU dataset CinC dataset
1st degree AV block 10560 (2.10%) 2394 (3.98%)
atrial fibrillation 19229 (3.82%) 3485 (5.74%)
atrial flutter 2714 (0.54%) 313 (0.52%)
bradycardia 19573 (3.89%) 277 (0.46%)
complete RBBB 15854 (3.15%) 3069 (5.10%)
incomplete RBBB 15854 (3.15%) 1611 (2.68%)
LAFB 7237 (1.44%) 1806 (3.00%)
left axis deviation 20374 (4.05%) 6086 (10.11%)
LBBB 7322 (1.46%) 1041 (1.73%)
low QRS voltages 7950 (1.58%) 556 (0.92%)
NICD 7189 (1.43%) 996 (1.65%)
pacing rhythm 4211 (0.84%) 299 (0.50%)
PAC 11857 (2.36%) 1935 (3.21%)
PVC 10441 (2.08%) 551 (0.91%)
prolonged PR interval 10560 (2.10%) 340 (0.56%)
prolonged QT interval 8323 (1.65%) 1513 (2.51%)
Q-wave abnormal 25969 (5.16%) 1013 (1.68%)
right axis deviation 2739 (0.54%) 427 (0.71%)
sinus arrhythmia 7660 (1.52%) 1238 (2.06%)
sinus bradycardia 18328 (3.64%) 2359 (3.92%)
sinus rhythm 179786 (35.73%) 20766 (34.48%)
sinus tachycardia 24440 (4.86%) 2390 (3.97%)
T-wave abnormal 60321 (11.99%) 4673 (7.76%)
T-wave inversion 4661 (0.93%) 1111 (1.84%)

Table 1. Number of ECGs present for each class in the
constructed UMCU and CinC training datasets. A single
ECG can belong to multiple classes. AV: atrioventricu-
lar, RBBB: right bundle branch block, LAFB: left anterior
fascicular block, LBBB: left bundle branch block, NICD:
nonspecific intraventricular conduction delay, PAC: pre-
mature atrial complex, PVC: premature ventricular com-
plex.

Figure 1. Illustration of the model architecture. B: batch
size, L: waveform input length.
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sampling the number of input channels. The dilation pa-
rameter used in the causal convolutional layer is doubled
in each subsequent causal convolution block from 1 to 64.
The first convolutional layer transforms 12 input channels
to 108 output channels and thereafter the number of chan-
nels is kept constant at 108 for the first six consecutive
causal convolution blocks. The seventh causal convolution
block used 216 output channels in the causal convolution
layers. All causal convolutions used a kernel size of 3. The
kernel size and the number of causal convolution blocks
were selected such that the resulting receptive field would
be sufficient to capture the normal duration of a cardiac cy-
cle from P-wave onset to T-wave offset, namely 383 sam-
ple points or an equivalent duration of 383 ·2ms = 766ms
at 500 Hz. As a result of employing causal convolutions
and subsequently max pooling, the length of the input can
be variable.

2.4. Model Training & Inference

We first trained the architecture for multi-label classifi-
cation of the 24 classes using the UMCU training dataset
that is described in Section 2.2. We applied 10-fold itera-
tive stratification for multi-label data [9] to obtain 10 dif-
fering training and test splits of the challenge dataset de-
scribed in Section 2.1. The parameters in some of the first
causal convolution blocks of the final pre-trained model
were frozen and only the remaining parameters of the
model were trained further. This resulted in a set of 10
models, which were used during inference to obtain final
probability scores by computing the mean over the indi-
vidual model probability outputs. All ECGs for inference
were resampled to 500 Hz using linear interpolation and
the full length (up to 10 seconds) was used.

We optimized the network parameters of the architecture
using a weighted focal loss function to handle class im-
balance, and Adam as the optimization algorithm [10, 11].
We assigned a weight to the positive samples of each class
equal to the class imbalance ratio to force equal attribution
to the loss of both class samples. These weights were mul-
tiplied by a factor between 0 and 1, to be able to optimize
the influence of weighting between no weighting and full
weighting. The used batch size was 128. Early stopping
was performed when the CinC challenge metric score on
the corresponding evaluation dataset had not increased for
five consecutive epochs.

Hyperparameters of the model were selected using man-
ual tuning. We assessed pre-training and different val-
ues for the learning rate, number of frozen blocks, gamma
value of the focal loss and the weighting factor. The model
with the highest mean challenge metric over the cross-
validation results was chosen. The final model used pre-
training with 5 frozen blocks, a learning rate of 0.001,
gamma of 2 and weighting factor of 0.5. All model training

Hyperparameter Cross-validation
pre-train frozen lr CinC metric

no 0 0.001 0.542± 0.008
yes 5 0.001 0.565± 0.005
yes 6 0.0001 0.546± 0.007
yes 7 0.0001 0.499± 0.006

Table 2. 10-fold cross-validation performances on the
CinC dataset of Causal CNN variants using different hy-
perparameter value combinations. The hyperparameters
pre-train, frozen, and lr indicate whether the model was
pre-trained on the UMCU dataset, the number of consecu-
tive causal convolutional blocks for which the parameters
were frozen, and the learning rate, respectively.

processes, and the architecture as described in Section 2.3
were implemented using the PyTorch package (version
1.3).

2.5. Statistical analysis

Overall algorithm discriminatory performance was as-
sessed using the macro-averaged area under the receiver
operating curve (AUROC), class-specific AUROCs, and
the CinC challenge metric [5]. Cross-validation perfor-
mance results are presented with the standard deviation.
All statistical analyses were performed using Python (ver-
sion 3.7).

3. Results

The obtained cross-validation performance results of the
Causal CNN with pre-training and without pre-training
and various hyperparameter values are presented in Ta-
ble 2. The best approach with five frozen blocks had an
AUROC cross-validation score of 0.939 ± 0.004. The fi-
nal AUROC and CinC challenge metric of this approach
on the hidden CinC test set were 0.915 and 0.417, respec-
tively, archieving place 7 out of 41 in the official ranking
(team name UMCUVA). The challenge metric ranged from
0.298 to 0.643 across the four different hidden test sets.
The AUROC ranged from 0.751 to 0.992 for the differ-
ent diagnoses, with the worst performance for T-wave in-
versions, T-wave abnormalities and premature ventricular
complexes and the best performance for sinus tachycardia,
pacing and sinus bradycardia.

4. Discussion

In this study we demonstrated that an ensemble of expo-
nentially dilated causal convolutional networks performs
excellent for comprehensive multi-label interpretation of
12-lead ECGs. In addition, we showed that pre-training on
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a large dataset of ECGs is feasible and improves accuracy
when trained on a relatively small dataset.

This is the first study to use exponentially dilated causal
convolutional networks for an ECG classification task.
Other works on ECGs have examined the usage of CNN-
based architectures that are developed for classification of
images [2–4]. However, the application of exponentially
dilated causal convolutions is more sensible for time se-
ries, such as ECGs, as they take the temporal nature of
the data into account and use increasing receptive fields
from which ECG features could be extracted [8]. Ear-
lier studies showed that this technique outperforms recur-
rent neural networks, another technique that allows for in-
creasing receptive fields, in terms of both efficiency and
prediction performance [6]. Furthermore, Strodthoff et
al. [7] have shown that transfer learning can be applied
to improve ECG classifiers. Likewise, we have demon-
strated that transfer learning, using the data available at
the UMCU, to a dataset recorded using a different ECG
device and acquired from an ethnically and geographically
different population, can be effective for improving ECG
classification.

This study has several limitations to address. Although
our proposed neural network allows for ECG input of
variable length, this study only used ECGs of maximum
10 seconds. It may be interesting to further investigate
the application of training on ECGs of variable duration.
Moreover, instead of zero-padding samples shorter than
10 seconds, one may consider constructing mini-batches
of ECGs with similar lengths. Furthermore, we only as-
sessed the focal loss method with different gamma values
and weighting factors to account for the severe class im-
balance in this dataset. However, discriminatory perfor-
mance is still worse in the smaller classes. Overall perfor-
mance might be improved by implementing other methods
to combat class imbalance, and by including ECGs of dif-
fering sampling rates to the training data.

The PhysioNet/CinC 2020 dataset is a step towards de-
velopment of deep-learning based automated comprehen-
sive ECG interpretation algorithms. Unfortunately, the
dataset included too few ECGs for the majority of the 111
available classes, and attention was primarly towards the
24 classes evaluated in this study. Future studies should
focus on gathering sufficient data of rare ECG diagnoses to
provide completely comprehensive ECG interpretations.

5. Conclusion

A combination of transfer learning and exponentially di-
lated causal convolutions shows excellent performance for
comprehensive interpretation of 12-lead ECGs. Our al-
gorithm had a CinC challenge metric score of 0.417 and
achieved place 7 out of 41 in the official ranking (team
name UMCUVA).
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