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Abstract

The ECG classification is a critical task in the early
and correct diagnosis of cardiovascular diseases. Al-
though various models have been developed to tackle the
heartbeat classification problem, their performance de-
grades on ECG signals recorded in varied testing con-
ditions due to the distribution discrepancy among differ-
ent sources of data. In this work, we have developed a
multi-source domain generalization model to address the
distribution discrepancy problem that occurred when the
collection of the data is from multiple sources with vari-
ous acquisition conditions. We have employed a combi-
nation of convolutional neural network (CNN) and long
short term memory (LSTM) for feature extraction. Further,
we exploit the adversarial domain generalization method
to overcome probable heterogeneity between the train and
test datasets. To increase generalization, we also utilized
different augmentation techniques including random ECG
pad and crop, adding low-frequency artifacts, and lead
dropout. We evaluate our proposed model on cardiac ab-
normality classification based on 12-lead ECG signals as-
sociated with ”Classification of 12-lead ECGs for the Phy-
sioNet/Computing in Cardiology Challenge 2020”. Our
method, achieved a challenge validation score of 0.609,
and full test score of 0.437 placing us (Sharif AI Team) 5th
out of 41 teams in the final official ranking.

1. Introduction

The importance of the quick and exact diagnosis of car-
diac abnormalities is remarkable since it can cause the
most serious life-threatening diseases. To interpret cardiac
conditions, physicians exploit the standard 12-lead ECG
that record the heart electrical activity from 12 electrodes
embedded on the body surface. Since the analysis of 12-
lead ECG signals is challenging and time-consuming, au-
tomatic detection can be represented as an assistant for
physicians. Accordingly, the PhysioNet/Computing [1]
has presented Cardiology Challenge 2020 in which the
subject is distinguishing cardiac abnormalities. It encour-

ages researchers to develop techniques for multi-label clas-
sification of 12-lead ECG signals into 27 classes.
In recent years, various machine learning and deep learn-
ing techniques have been proposed to detect different heart
anomalies from ECG signals. Traditional methods em-
ploy different classification techniques such as K-Nearest
Neighbour [2], and Support Vector Machines [3] on hand-
engineered features. Approaches based on deep neural
networks proposed in recent years generally vary in their
network architectures. The network developed in [4] uti-
lize only convolutional layers to detect different kinds of
arrhythmia. The introduced methods in [5, 6] combine
convolutional layers with LSTMs to classify ECG signals.
However, the above studies do not consider distribution
discrepancy between different benchmarks caused by dif-
ferent recording conditions, which is a crucial problem for
practical ECG interpretation. Recently, [7–9] apply a deep
domain adaptation approach to reduce the discrepancy be-
tween the training and test distributions that appeared due
to the varied acquisition conditions for ECG signals. To
alleviate discrepancies among ECG signals from differ-
ent datasets, [7] utilizes fully connected hidden layers, [8]
benefits from a strategy based on the multi-layer multi-
kernel maximum mean discrepancy, and [9] proposes a
cluster-aligning loss and a cluster-separating loss. How-
ever, these methods do not consider the distribution dis-
crepancy within the training set which can be caused be-
cause data have been collected from multiple sources with
different characteristics. Furthermore, conventionally they
suppose that test samples are available during the train-
ing phase and do not focus on generalization on the un-
seen test dataset. To the best of our knowledge, we are the
first to tackle the multi-source domain generalization prob-
lem to improve the performance of the ECG classification
task in the practical area. In this study, our objective is
to address this challenge aiming to improve 12-lead ECG
classification performance. Therefore, we aim to present a
practical diagnostic tool as a medical assistant that can au-
tomatically classify 12-lead ECG signals assembled from
the different clinics with various recording conditions us-
ing a deep multi-source domain generalization method.
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2. Methods

2.1. Pre-processing and Augmentation

Due to the environmental conditions, ECG signals typi-
cally have some low and high-frequency noise components
that may vary in different datasets. Since we use deep
learning frameworks with high capacity for classification,
we have not cleaned these frequency components from the
dataset. Alternatively, we have randomly added or filtered
frequency components as a data augmentation technique
to increase the effective size of the dataset. Moreover, this
procedure has an additional advantage as it may increase
domain generalization capability in situations where train-
ing and test datasets are gathered from different sources
and do not have the same statistical properties. Besides,
with a very low probability, the following procedures have
also been taken on the training data as data augmentation
techniques:
• Randomly substituting the signal of one lead with en-
tirely zero signal or a low-frequency noise,
• Randomly shuffling the position of two or more leads,
• Randomly inverting the signal of one or more leads,
• Randomly applying a band-pass filter on ECG signal,
• Randomly scaling the ECG signal or adding a random
offset to it.

The length of ECG signals fed into the model is consid-
ered fixed. Shorter signals are randomly padded and longer
signals are randomly cropped during training. Since the
data from different domains have a different distribution of
signal lengths, with a low probability, long signals are also
randomly cropped to the length lower than the input size,
and then randomly padded to fit the input of the classifier.

All ECG signals are resampled to 250 Hz and normal-
ized by a constant scale. We just used ECG signals that
have at least one label from 27 scored classes and exclude
other data from the training dataset. We also adopted 5%
of training data for validation to first, calculate the opti-
mum thresholds for classification and then, choose the best
models based on their validation performance.

2.2. Feature Extraction and Classification

Figure 1 shows the structure of the proposed method.
Motivated by previous studies [10, 11], we have used two
parallel convolutional networks for feature extraction. One
network exploits smaller kernel sizes to extract finer fea-
tures and another network extract coarser ones using larger
convolution kernels.

The ECG signal has a sequential nature. When using
a long time series signal for classification, the classifier
may encounter the curse of dimensionality. Hence, we uti-
lized the Recurrent Neural Networks (RNNs) to integrate
time-related features before applying classifiers on them.

Figure 1. The overall structure of the proposed model.
Convolutional networks with large convolution kernels (a)
and smaller convolution kernels (b) are used to extract
coarse and fine features, respectively. Each convolutional
network is followed by one max pooling and one LSTM
layer. The extracted features are concatenated to the sex
and age attributes of samples to produce the final feature
vector. For domain generalization, a two-layer MLP net-
work is used to classify domains from the final feature vec-
tor (c). Finally, the classification of arrhythmias is per-
formed by passing the feature vector through 27 binary
classifiers (d).

To this end, two bidirectional LSTMs are applied on the
top of the parallel CNNs to produce time-independent low-
dimensional feature vectors (Figure 1).

Since each recording may have more than one label,
we use 27 separate binary classifiers to predict the pres-
ence of each arrhythmia, independently. After the last FC
layer of each classifier, the sigmoid activation function has
been used to compute the probability of the correspond-
ing class. The probabilities are then binarized using class-
specific thresholds. We used half of the validation data,
to obtain the optimum thresholds via a grid search based
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on the maximization of the challenge score. By fixing the
threshold values, the validation performance is then calcu-
lated based on another half of the validation dataset.

Each classifier is optimized by the binary cross-entropy
loss function but the entire network, including the shared
feature extractor parts, is optimized with respect to the
weighted average of these cross-entropy losses. We used
an importance factor for each class to determine the
amount of contribution of its loss function in the optimiza-
tion problem. These factors are not constant for all samples
and the mutual weight between each ground truth label and
other labels are defined based on the following weight ma-
trix:

Mw = 1−Wreward + α ∗ I (1)

where, Wreward is the reward matrix from [1] and I is the
27×27 identity matrix and α is a positive hyperparameter.
In the situation that one record has more than one label,
we took the element-wise minimum of the corresponding
rows from the weight matrix. The final classification loss
function is defined as:

LC(xi, yi;Md,Mw) = −
27∑
c=1

Md(i, c)Mw(i, c)

[yci log(G
c
y(zi)) + (1− yci ) log(1−Gcy(zi))],

(2)

where zi = [Gf (xi), sex, age], Md is the domain mask,
Gf is the parallel feature extractor, andGcy is the cth binary
classifier.

2.3. Adversarial Multi-Source Domain Gen-
eralization

In real-world scenarios, ECG signals may be recorded
in different places through different devices with varying
characteristics including different sampling frequencies,
signal gains, or recording protocols. This results in an in-
homogeneous dataset in which different partitions of the
dataset carry different statistical properties. Furthermore,
if the annotations of these partitions have been performed
by different experts, this also induces inhomogeneity to the
labels of the dataset that is also inevitable in the multi-
source and large scale ECG datasets.

In most of the classification methods, it is usually as-
sumed that instances from training and test datasets are
sampled from the same distribution and these methods
are not robust to statistical shifts. In the presence of test
datasets, we could use unlabeled test data for domain adap-
tation techniques to make classification methods more ro-
bust to this domain shift. However, in many real-world
applications, there is no access to the test data during the
training of the models. Hence in this study, we try to in-
crease the generalization of the models on different do-
mains, without possessing samples of the test dataset.

We have used the domain-adversarial training technique
[12] to increase generalization. To this end, a gradient re-
versal layer is added on the top of the feature vector then
the output is passed to the domain classifier Gd as shown
in Fig. 1(c). The following loss function is optimized to
train this classifier:

LD(xi, di) = −
4∑
k=1

dki log(Gd(zi)), (3)

where dki shows whether xi belongs to domain k. Given
ith training smaple, the total loss function is defined as:

Li = LiC + λLiD. (4)

As mentioned before, when data is collected from differ-
ent sources, the distribution of labels is not similar across
different domains. To reduce possible adverse side ef-
fects of annotation heterogeneity, we have used a domain-
specific mask Md during optimization which allows opti-
mizing the network through available classes of each do-
main, and the algorithm does not punish out of domain
misclassifications.

3. Results

Our method achieved a score of 0.609 and 0.437 on the
official validation and test dataset, respectively. Using 5-
fold cross-validation on the full training dataset, the pro-
posed method achieved a score of 0.629±0.003. In this sec-
tion, we design additional experiments to better analyze
the attributes of our proposed method.

In the first experiment, we build up four control models.
In the first control model (C1), we did not perform data
augmentations except random padding and cropping. In
the second model (C2) we just excluded the additional ran-
dom cropping from augmentation. In the third and fourth
models (C3 and C4) we just used fine-grained and course-
grained CNN for feature extraction, respectively. Table 1
shows the performance of these control models along with
our proposed model on the hold-out validation of the train-
ing dataset.

To evaluate the effectiveness of adversarial domain gen-
eralization in our setting, we have conducted a new exper-
iment. We have treated CPSC, CPSC-Extra, PTB-XL 1,
and G12EC datasets [1] as different domains and then we
assessed our model in a leave-one-out manner. Three do-
mains have been used for training and the performance has
been evaluated on the last domain and finally, 4 different
results have averaged out. The model with adversarial do-
main generalization achieved a score of 0.352 while the
score is 0.343 without domain generalization.

1To reduce probable effects concerning the dominance of this dataset,
we only used 10k samples of this dataset in the present experiment.
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Measure Ours C1 C2 C3 C4

AUROC 0.64 0.60 0.62 0.60 0.61
AUPRC 0.96 0.95 0.95 0.95 0.95

Accuracy 0.46 0.43 0.46 0.45 0.43
F1 0.57 0.55 0.55 0.55 0.56
Fβ 0.61 0.60 0.59 0.56 0.60
Gβ 0.37 0.34 0.35 0.36 0.37

Challenge score 0.64 0.62 0.62 0.62 0.62

Table 1. Performance of control models on the 10%
hold-out validation from the training dataset. In C1, data
augmentations except random padding and cropping are
excluded. In C2, the additional random cropping is ex-
cluded. In C3 and C4, respectively, fine-grained and
coarse-grained CNN are used for feature extraction.

4. Discussion and Conclusions

In this paper, we have proposed a method for the classifi-
cation of 12-lead ECG signals. There are at least six types
of challenges associated with the dataset that we tried to
tackle in our proposed algorithm:
• Different size of data across different domains
• Heterogeneity of multi-source dataset and the possible
difference between the train and undisclosed test data
• Heterogeneity of annotations between different domains
(especially between the train and test data)
• Imbalance class distribution within each domain
• High variance in the distribution of signal lengths
• Different penalties for misclassification of different pairs
of classes

We designed our method aiming to improve generaliza-
tion on the unseen test dataset. Hence, some of its at-
tributes may lose their significance when the test and train
data come from the same distribution. In the Results sec-
tion, we showed the superior performance of our data aug-
mentation and domain generalization techniques against
control models. However, the gap between our model and
control models could become more significant when the
test dataset comes from a different source.

Due to the time and resource limits concerning the
cloud-training of models in the challenge, we did not in-
clude records with unscored labels for training. Utiliz-
ing these samples can enhance feature extraction and do-
main generalization and further improve the overall perfor-
mance.
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