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Abstract

Electrocardiography allows fast and noninvasive diag-
nosis and screening of a wide range of cardiac diseases.
The interpretation of ECGs is difficult and depends on
the levels of training of the physician. In consequence,
pathologies can remain undiagnosed or norm-variations
are interpreted as pathological.

The PhysioNet/Computing in Cardiology Challenge
2020 aims to classify various cardiac pathologies in 12-
lead ECGs, data was collected across a variety of different
clinics and countries to pave the way for a common evalu-
ation of ECGs. Our Team Heartly-Al proposes a two-step
algorithm using a UNet and XGBoost for the 2020 Phys-
ioNet Computing in Cardiology Challenge “Classification
of 12 lead ECGs”. The algorithm achieved a 5-fold cross-
validation metric of 0.113 and scored 0.136 on the official
test set, therefore placing us 28th out of the 41 teams in the
official ranking.

1. Introduction

Electrocardiography allows fast and noninvasive diag-
nosis and screening of a wide range of cardiac diseases
ranging from arrhythmias like atrial fibrillation, conduc-
tion disorders like branch blocks to myocardial infarction
[1,2]. The interpretation of ECGs is difficult and depends
on the level of training of the physician [3]]. General prac-
titioners (GPs), who often record ECGs, have a diagnos-
tic agreement of around 70% [4-6]]. Automatic interpre-
tation performed by ECG machines have shown an even
worse performance around 44% agreement [6}/7] In con-
sequence, pathologies can remain undiagnosed or norm-
variations are interpreted as pathological. In the last years,
there has been a lot of active research on Deep Neural Net-
works for ECG analysis, but they often only focus on a
few common diagnoses and the data originates from only
one clinic [8-10]. This makes it all the more important
that the focus should be on identifying numerous different
diagnoses in ECGs coming from a diverse range of data
sources.
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Our approach to this year’s PhysioNet Challenge [11,
12] was to develop a solution that creates human-
interpretable intermediate outputs and thereby making
the models’ classification understandable. First, we seg-
mented the ECG into P waves, Q RS complexes, T’ waves,
and interbeat segments with an UNet-like fully convolu-
tional neural network. In the second step, we calculated
features like median P() time or R-amplitude. Lastly, we
used XGBoost to classify the ECG with 24 non-exclusive
labels.

2. Methods

2.1 Preprocessing

For preprocessing, the ECGs with a varying sampling
frequency were resampled to 500 Hz using the Fast Fourier
transform. To remove baseline wander and high-frequency
noise, the resampled signal was filtered with a band-
pass filter to a range of 0.05 Hz to 42 Hz. Furthermore,
we applied a discrete wavelet transform with Daubechies
wavelet (Db4) with hard thresholding as a high-pass filter
to remove the remaining baseline wander.

2.2 Training Data

Training data for the segmentation was generated by
building an annotation tool that allowed us to mark seg-
ments in ECGs as either P waves, QRS complexes, or
T waves. The QRS complexes were annotated as ei-
ther normal, supraventricular, or ventricular extrasystoles.
With this tool, we annotated snippets of up to 20 seconds
of random ECGs. The backend of the annotation tool was
programmed in Python. FastAPI was used to preprocess
and provide the ECG files and store the data in a MySQL
database. The annotation frontend was built with Angular
as a web app. To display the data, ECGs were drawn on
a canvas object with a resolution of 1 pixel per data point
(see Figure[I). During annotation, the frontend displayed
predictions for the segmentation that could easily be ad-
justed or completely removed. All data was annotated by
one physician. As a labeling strategy, we first manually
annotated 200 random ECG snippets. Second, we used
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Figure 1. Example annotation of an ECG taken from our annotation tool. P-waves are highlighted in orange, QRS-
complex in blue and T-waves in green. All the @) RS-complexes are annotated as normal beats.

a neural network (see Figure [2) for automated prelabeled
segmentation of 200 additional ECGs. These were man-
ually screened and segments were corrected if necessary.
The rules for selecting cases were built on physiological
plausibility, for example, finding a T-wave after a QRS-
complex vs. two () RS-complexes occurred in succession.
Moreover, we screened and corrected another 330 ECG
records in which there was a discrepancy between labeled
extrasystoles and the prediction of our neural network. Be-
cause calibration bars in records resulted in artifacts, we
also added 10 annotated ECGs containing these artifacts to
the annotated corpus. Each annotated ECG was randomly
assigned into one of 10 groups. This allowed us to main-
tain training, validation, and test splitting throughout the
annotation process and to keep track of the performance
progress. We trained the network on 573, validated on 94,
and tested on 73 ECGs.

2.3 Training the UNet

The trained neural network was inspired by an exist-
ing solution for ECG segmentation [[13[]. We trained the
network on 12-lead ECGs of arbitrary length with all 12
channels as inputs, and two different outputs with four
neurons each. The first output predicted for each time
point whether it belonged to a P-wave, T-wave, or QRS-
complex. The second output predicted for each QRS-
complex if it is a supraventricular or ventricular extrasys-
tole, a normal beat, or no QRS-complex (see Figure [2).

Input: None, 12

32 32 32

The input of the network accepts a signal with any num-
ber of time steps and 12 channels (None, 12), allowing us
to pass ECGs of any length. We down-sampled the signal
4 times with blocks of 2 convolutions and a max-pooling
with a stride of 2. Thus, the time dimension of the middle
layers were 1/16th of the original duration. They consisted
of 2 convolutional layers, each with a dropout of 50 %.
To upsample the network to the original duration, each
step consisted of one transposed convolution, doubling the
time dimension, and three dilated convolutions. The down-
sampling and upsampling blocks were summed to create
skip connections. The primary output for the segmentation
are 3 convolutional layers and one time-distributed dense
layer, which is equal to 4 convolutions with size 1. For ex-
trasystole classification, there is a secondary output with 2
convolutional layers, and a dense layer with softmax mul-
tiplied with the QRS output.

For each layer, we tried a set of 32, 48, 64, 72, 80, 88,
96 neurons while restricting previous layers to the same
amount or fewer neurons than in the previous layer. We
choose the amount of neurons that was the smallest with-
out worsening the prediction score.

The applied losses were Tversky loss for the segmen-
tation [[14]] and categorical cross-entropy for the extrasys-
tole classification. For segmentation, we also tried other
losses like dice loss[15]], focal Tversky, and Tanimoto loss
[16] and categorical cross-entropy, but they did not achieve
proper segmentation boundaries.
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Figure 2. Scheme of our UNet like convolutionary neural network.
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In general, each convolution was followed by batch nor-
malization and Mish activation [17]. As an optimizer, Rec-
tified Adam with LookAhead (Ranger) was used [18]]. The
network was trained for 200 epochs. After 140 epochs, we
reduced the learning rate with a cosine annealing to zero
[19]. This way, the network showed minimal over-fitting
when training on the training data. In our official entries,
we trained with the same parameters on the whole anno-
tated dataset.

2.4 Segmentation

Using our UNet, we were able to calculate to approx-
imate the onsets and offsets of the ECG segments. Each
QRS-complex was part of a beat object which also con-
tained the corresponding P-wave and T-wave. We fur-
ther validated each heartbeat: A beat object must contain a
QRS-complex and a T-wave to be valid. Invalid beats as
well as the first and last beat were excluded from all fea-
ture calculations. We tried more strict rules such as a mini-
mum length of Q RS-complex and T-wave but this did not
improve the classification performance. Additionally, we
estimated the baseline of the ECG signal by linear regres-
sion of interbeat intervals between each beat. We used this
baseline to calculate the amplitudes of P and T-waves as
well as the ) RS-complexes.

2.5 Feature extraction

We extracted 54 features from the segmented ECGs.
Classical features such as heart rate, QRS complex ampli-
tude, PR interval, and QT c time were calculated from the
segmented data. For each measured duration, mean and
median absolute deviation were extracted. We computed
the Frank leads [20]] and calculated the amplitude in the
X, Y, and Z dimension and the angle in the XY, Y7,
and X Z plane for P, R, and T-waves. Extrasystole in-
formation was used to calculate the relative proportion of
normal beats as well as supra and ventricular extrasystoles.
To distinguish left and right branch blocks, we calculated
the time difference of the R peak in V1, V2 and V5, V6.

2.6 Classification
To tune the parameters of XGBoost, we used 5-fold

cross-validation [21] using hyperopts implementation of
tree-structured Parzan estimators [22]] (see Table [2). Tun-
ing objective was to maximize the prediction accuracy.

Lastly, a model was trained on all data using the opti-
mized set of parameters. Due to time constraints, we did
not perform any relabeling of the training data.

Table 1. R-Peak segmentation accuracy in F1 on the MIT-
BIH Database (MITDB).

30ms 150 ms
0.932 0.943

Tolerance 5ms 10ms 20ms
MITDB 0.595 0.880 0.922

Table 2. Best set of parameters using hyperparameter op-
timization of the XGBoost model.

Parameter Default Tuned
n_estimators 100 300
max_depth 6 7
gamma 0 0.9816
alpha 0 0.9816
min_child_weight 1 1
subsample 1 0.77788
learning_rate 0.3 0.06167

Table 3. Segmentation accuracy on a test split (F1).

Tolerance P-wave QRS-complex 7T-wave

5ms 0.7765 0.9210 0.5967

10ms 0.9575 0.9790 0.7003

20 ms 0.9855 0.9816 0.8834

30 ms 0.9855 0.9816 0.9225
3. Results

While the segmentation showed promising results, our
model was unable to achieve an overall good performance.
The model achieved a challenge metric of 0.136 on the
hidden test set while the top-performing teams scored up
to 0.533. This ranked our team Heartly-Al on the 28th
place of the participating 41 teams.

On a validation split of the data, only 8 of the scored
24 classes reached an F1 greater than 0.5. The model per-
formed well on atrial fibrillation (F1 = 0.87), sinus rhythm
(F1 =0.82) and left bundle branch block (F1 = 0.77).

We compared the signal onset with the predicted onset
given a certain tolerance to test the segmentation accuracy
on a test split, see Table[3] Table[I]shows the performance
on the MIT-BIH Database. To match our data format, we
repeated each of the two channels in the MITDB 6 times
to simulate 12 channels. This might lead to a worse per-
formance compared with genuine 12 channels.

4. Discussion and Conclusions

We developed and tested an algorithm for segmentation
and classification of 12-lead ECGs. Even though our ap-
proach for segmentation did not achieve a state of the art
result in beat detection, its performance is comparable to
other deep learning based approaches [23H25]].

The classification part of our algorithm did not perform
satisfactorily. One problem with our algorithm was that
the provided labels were only annotated for 6 classes in the
CPSC dataset. However, we trained on 24 classes, making
the correct classification of the other 18 classes even less
likely. We also prepared an entry that masked out the labels
for not annotated categories in the CPSC data, but this did
also affect the validation error since we created false posi-
tive matches in non-annotated classes and thus resulted in
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a worse challenge metric. We did not include the source
of the data in the features since this would contradict the
purpose of the challenge to build a classifier for any source
of data. Further, it would not generalize to new unseen
databases that will be in the final test data. Moreover, we
did not correct any labels of incorrectly classified ECGs.

Our original plan was to use the segmentation data as
an auxiliary output for a network that would classify the
pathology in the ECG. In preliminary tests on our own 740
annotated ECGs, our approach has shown promising re-
sults, achieving a macro F1 of 0.5. However, this plan was
no longer pursued due to a lack of time to implement this
methodology in a way that it would reliably train on the
PhysioNet servers, and we hope to test this solution after
the challenge. We also see potential in annotating further
ECGs with active learning. For example, we could focus
on ECGs with first-degree AV-blocks where the P — R dis-
tance is detected in normal ranges. Also, a wider variety
of training sources could help to improve the segmentation
task even further.
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