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Abstract

This work represents an entry to the 2020 PhysioNET
Computing in Cardiology Challenge for the team named
“Whitaker’s Lab.” The algorithm we developed can be di-
vided into three main components: feature extraction, di-
mensionality reduction, and classification. In the feature
extraction stage, we process the provided 12-lead ECG sig-
nals to determine various features. We consider 12 time-
domain statistical features per lead, as well as sparse cod-
ing features obtained from frequency information that is
extracted from each ECG lead. After computing the fea-
tures, we reduce the dimensionality of the statistical fea-
tures using principal component analysis in an attempt to
ease the computational requirements of the classifier. After
feature extraction and dimensionality reduction, we clas-
sify each 12-lead ECG signal using a random forest clas-
sifier. The classifier is trained using a cross-validated grid
search algorithm to help select hyperparameters. In an at-
tempt to avoid overfitting, the classifier and unsupervised
feature extraction algorithms are trained on disjoint sub-
sets of the Challenge data. We were unable to rank and
score in the test set, but using a holdout portion of the
training set we achieved a validation score of -0.744. This
result is likely to be over-optimistic.

1. Introduction

This work represents an entry to the 2020 PhysioNet
Computing in Cardiology Challenge [1, 2] for the team
named “Whitaker’s Lab.” The goal of the Challenge is to
accurately detect several different types of abnormal heart
rhythms along with a healthy rhythm. Specific details of
the Challenge can be found in [1].

2. Methods

While we were unable to submit a final Challenge en-
try, we believe we are using two strategies that may be
combined with other algorithms to develop a more robust

classifier. The first is our use of sparse coding to extract
features. We have previously used sparse coding to help
detect abnormalities in time series cardiac data, consider-
ing both EGC signals and phonocardiogram (PGC) signals
[3, 4], and believe it to be an underutilized tool.

The second is our method of data stratification for train-
ing the classifier. It is well known that using N -fold cross
validation or reserving a holdout set in the learning process
can help avoid overfitting [5]. Both strategies effectively
split the data into two groups: one used to train the algo-
rithms, and one used to report a validation score. However,
our approach uses learning-based algorithms in two capac-
ities. We used two unsupervised learning algorithms, prin-
cipal components analysis (PCA) and sparse coding, to ex-
tract features from the data and we used a supervised learn-
ing algorithm, a random forest classifier, as the final clas-
sifier. Because of the possibility of overfitting when using
the same set of training data to train both types of learning
algorithms, we split our data into three groups: one used
to train the feature extraction algorithms, one used to train
the classifier, and one reserved for validation.

In addition to these two methods, we use fairly common
algorithms for ECG analysis and prediction. We use a tra-
ditional R-peak detection algorithm [6], PCA, and a ran-
dom forest classifier [7]. All of these tools have been suc-
cessfully applied to ECG analysis in previous work [8–10].

Fig. 1 illustrates a block diagram of our algorithm. We
extract features from each lead independently. We then
combine the features into a single vector that is used in the
classification stage, where we use a random forest classi-
fier trained with a cross-validated random search for tuning
hyperparameters [11]. The output of the classifier is the
predicted disease class associated with the 12-lead ECG
signal. The remainder of this section explains the details
of how we implemented our algorithm on the 12-lead ECG
signals provided by PhysioNet.

2.1. Preprocessing and Data Separation

Prior to performing any machine learning techniques,
we first analyzed each 12-lead ECG file and replaced the
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Figure 1. Block diagram outlining our approach. After basic preprocessing, each lead of the 12-lead ECG signal is sent to
our feature extraction algorithm. The features are then combined and used as the input to a random forest classifier.

Not-a-Number (NaN) values with zeros. We then split the
data into 3 groups: 25% of data was assigned to train the
models for feature extraction (PCA and sparse coding),
50% of the data was assigned to train the random forest
classifier, and the remaining 25% of the data was reserved
as a holdout validation set.

The Challenge data included ECG signals taken from
a variety of clinical locations. In order for an ECG clas-
sification algorithm to be practical, a classifier trained in
one location should be able to generalize to another loca-
tion. For this reason, we included an entire subset of the
Challenge data (the unused portion of the CPSC2018 data)
in the holdout set. The remaining ECG signals were ran-
domly assigned to their respective group.

2.2. Feature Extraction

One purpose of feature extraction is to reduce the size of
the input data to a smaller dimension. For example, if the
data for one patient is a 15-second signal consisting of 12
ECG leads sampled at 300 Hz, then the total dimension of
the input signal is 54,000. There are many ways to reduce
the dimensionality of this signal: we can use just one of the
12 leads, we can use just the first 10 seconds, or the signal
can be downsampled to 100 Hz. Each of these methods
(or a combination of all three) would significantly reduce
the input dimension. However, the goal of feature extrac-
tion is not just to truncate the data. Rather, it is to find a
feature set that summarizes the discriminating information
that may be present in the original ECG signals, allowing
this information to be preserved and used in the classifica-
tion stage.

Fig. 2 shows a block diagram of the feature extraction
approach we used in our algorithm. As can be seen in
the figure, our algorithm extracts two different types of
features. The first type are PCA features that are trained
on statistical values associated with the R-peaks and RR-
intervals of the ECG signal. The second type of features
are sparse coding features obtained from the frequency-

domain representation of each ECG lead.
R-peak Analysis & Statistical Features: In the top

branch of our feature extraction algorithm, we first per-
form a R-peak analysis to find the R-peak values and the
RR-interval times associated with the input lead. One R-
peak is associated with each heartbeat, and the value of the
R-peak corresponds to the strength of the electrical sig-
nal produced by the heart to stimulate the heartbeat. The
RR-intervals can be interpreted as the time between con-
secutive heartbeats. We then calculate statistics for the R-
peaks and RR-intervals. The statistics we use are mean,
median, standard deviation, variance, skewness, and kur-
tosis, resulting in in 12 statistics per lead. While not ex-
plicitly depicted in the figure, the statistics from each lead
are concatenated to form a vector of 144 statistical features
associated with each patient. We then use PCA to reduce
the dimension of this data from 144 to 20.

PCA: PCA is a method of reducing dimensionality
while retaining the maximum amount of variance in the
data. The goal of PCA is to find the principal components
of the data, which are new vectors that are made from lin-
ear combinations of the input variables. These new vari-
ables are uncorrelated and selected so that most of the in-
formation from the input training data is contained within
the first. The second component contains the second most
amount of information, and so on. The first step to PCA
is to standardize the data so the data is all transformed on
the same scale. This standardization of the data is done
to prevent some input features from dominating over other
values, which helps to preserve the information. In PCA,
eigenvalue decomposition is performed on the covariance
matrix associated with the input training data. The eigen-
vectors create a set of orthogonal vectors that spans the in-
put feature space. The eigenvalues are associated with the
variance for each eigenvector. Thus ranking each eigen-
vector by its eigenvalue from highest to lowest effectively
sorts them in order of significance. The dimensionality
reduction is done by choosing how many eigenvectors to
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Figure 2. Block diagram of the feature extraction portion of our algorithm. The R-peak values and RR-intervals are
detected, and various statistics are collected for each lead. The statistics from all leads are combined, and the dimensionality
is reduced using PCA. The ECG signals also undergo a frequency analysis, and the frequency information is encoded as
features using sparse coding. The PCA and sparse coding features are then sent to the classifier.

keep. In our implementation, each of the original 144-
length vectors is represented (with minimal global error)
as a linear combination of 20 principal components. The
20 coefficients become the PCA features associated with
that particular signal. Note that the covariance matrix is
formed by using only the training data; for new input sig-
nals, the 20 features are determined without altering the
covariance matrix.

Frequency Analysis: In the bottom branch of our fea-
ture extraction algorithm, we perform a frequency analysis
on the ECG data using an 8192-point fast Fourier trans-
form (FFT). The length 8192 was chosen because it cor-
responds to an ECG signal of approximately 30 seconds
(rounded to the nearest power of two), and most of the
Challenge signals were shorter than this. Longer signals
are truncated and shorter signals are zero-padded to create
the FFT. After computing the FFT, we consider only the
magnitude spectrum, and since the magnitute spectrum for
real signals is symmetric, we consider only the first 4096
samples in the frequency domain. The purpose of using the
FFT is to line up the input data on a common axis. When
analyzing ECG signals in the time domain, the interesting
information (QRS complex, R-peak locations, etc.) can
occur sporadically throughout the signal. In the frequency
domain, the first sample always corresponds to 0 Hz and
the 4096th sample always corresponds to 300 Hz. This for-
mats the data nicely for sparse coding, which is a matrix
factorization technique.

Sparse Coding: Sparse coding is a learning method that
aims to find a sparse representation of the input data from
linear combinations of unknown basic elements. These ba-
sic elements are called atoms, which make up a dictionary.
By definition, the sparse vectors contain a majority of ze-
ros, which helps to speed up computations and reduce the
theoretical classification complexity. In our algorithm we

choose a dictionary size of 100 features and a sparsity pa-
rameter of 5, indicating that 95 of features are zero. A
common dictionary is trained using data from all 12 leads
from all patients in the feature extraction training set.

Output: The final output produced by our feature ex-
traction algorithm is a vector of length 1220. The first 20
features correspond to the PCA features determined from
the statistical analysis the R-peak results. The last 1200
features correspond to 100 sparse coding features for each
of the 12 leads. However, it should be noted that only 60
of the 1200 sparse coding features are nonzero.

2.3. Classification

After feature extraction, we used a random forest classi-
fier to determine the class label for each ECG signal. The
random forest classifier uses a combination of multiple de-
cision trees in a probabilistic manner. The classification
accuracy using the ensemble of decision trees is better than
using the individual decision trees due to the majority vot-
ing being used to make the final decision regarding the
output class. The random forest classifier uses a random
selection of features at each decision split to avoid cor-
relation between the decision trees [10]. In order to avoid
over-fitting, we used cross-validation to select the hyperpa-
rameters. The best parameters obtained using grid search
approach for the random forest classifier are to use eight
estimators with a maximum depth of two, and to use the
‘Gini’ criterion for calculating feature importance [12].

3. Results

We were unable to train our model on the full Chal-
lenge dataset, so the model we used for validation was
trained only on the originally posted Challenge data. Ta-

Page 3



ble 1 presents a summary of the results we were able to
collect. In the table, the Training column shows the re-
sults our classifier obtained on the 25% holdout set from
the original data (following the 25%, 50%, 25% data split
procedure). The Validation column shows the results ob-
tained from the 25% holdout set from the updated Chal-
lenge data. Most metrics decrease, but we are confident
that training the model on a more complete dataset would
give better results.

As mentioned previously, we were unable to submit a
successful model in the Official Challenge phase and there-
fore we are unable to present testing results. The training
and validation scores reported in Table 1 are likely to be
over-optimistic. However, we are hopeful that training an
algorithm on the full set of training data will improve the
classifier.

Table 1. Summary of training and validation results.

Metric Training Validation
AUROC 0.476 0.511
AUPRC 0.134 0.054
Accuracy 0.238 219
F-measure 0.078 0.002
F-beta 0.108 0.002
G-beta 0.044 0.001
Challenge Score 0.216 -0.744

4. Conclusion

Because we were unable to submit a working Challenge
entry, we cannot in good faith draw meaningful conclu-
sions about the performance of our algorithm. However,
we are hopeful that our unique contributions may prove
useful in future work. In particular, we have introduced
our methods of (1) sparse coding for unsupervised fea-
ture extraction and (2) three-way data splitting for training
feature extraction and classification algorithms. In future
work, we plan to incorporate these two methods with other
successful algorithms to investigate possible performance
increases in the cross-validation score and develop an algo-
rithm that can be successfully tested on the hidden dataset.
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