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Abstract 

The aim of this work is to classify 12-lead ECGs into 26 

classes, including normal sinus rhythm, atrial fibrillation, 

left bundle branch block, and ST-segment depression and 

elevation. This work is team Marquette’s submission to the 

PhysioNet/Computing in Cardiology Challenge 2020. Our 

approach is to apply two modelling techniques: a 

reconstructed phase space — Gaussian mixture model 

(RPS-GMM) method and a one-dimensional convolutional 

neural network. The one-dimensional convolutional neural 

network consists of 11 layers consisting of both 

convolutional and fully connected layers. It takes inputs of 

varying lengths to output a single diagnosis and is trained 

from scratch within the competition time limits. Our 

second method, the RPS-GMM approach, embeds each 

ECG lead into an 11-dimensional space and classifies 

using a maximum likelihood classifier. While we propose 

and discuss two methods only the deep convolutional 

neural network was used in our submissions. The RPS-

GMM approach was not scored as it exceeded the 

competition training time limit. We achieved a score of 

0.492 on the test data, but were not ranked due to 

omissions in the submission. Next steps include reducing 

the training time of the RPS-GMM approach and 

ensembling the two methods. 

 

1. Introduction 

This work is team Marquette’s submission to the 

PhysioNet/Computing in Cardiology Challenge 2020 [1], 

[2]. The challenge rules, discussion of the dataset, and 

challenge results are described in [2]. The rest of our paper 

focuses on the methods we have used with a short 

discussion and conclusion section. 

 

2. Methods 

We classify 12-lead ECGs into 26 classes, including 

normal sinus rhythm, atrial fibrillation, left bundle branch 

block, and ST-segment depression and elevation. We 

introduce a convolutional neural network (CNN) that is 

shallow enough to be trained within the competition time 

limits and can handle variable input sizes to predict a single 

diagnosis. A second method used is the reconstructed 

phase space - Gaussian mixture model (RPS-GMM) 

approach, which models the ECG signals in a 

reconstructed phase space using Gaussian mixtures. 

 

2.1. Preprocessing 

We perform some initial preprocessing of the signal. 

First, we make sure the signal is sampled at a consistent 

rate. We normalize the frequency to 500 Hz using simple 

down sampling of the 1000 Hz signals that exist in the 

training set. 

We look for extreme outliers by thresholding signals 

that are 10.5 standard deviations away from the mean. 

These are replaced by the previous value of the time series. 

The signals are then z-score normalized for the GMM-RPS 

method and similarly scaled to 3.5 standard deviations for 

the CNN. 

 

2.2. Convolutional Neural Network 

One-dimensional convolutional neural networks (1D-

CNN) are being used to great effect in time series 

processing [3].  Hannum et al. show a convolutional 

network can outperform cardiologists in heart arrhythmia 

detection [4]. They use a single model that takes a 30 

second, 200 Hz ECG signal and predicts a single diagnosis 

for each second of the signal. The method is difficult to 

reproduce in this competition. It would be difficult to train 

a model of that size (over 30 layers) in the competition time 

limit. Also, the method predicts a single diagnosis for 

every second of the ECG sample; this competition requires 

multiple diagnoses to be predicted, but the data does not 

distinguish at what time in the sample the diagnosis occurs. 

We choose a rather different network architecture to 

mitigate these problems. 
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Figure 1: Architecture of the Convolutional Neural Network. Filters and pools are applied to down-sample the original 

500Hz signal. Then a global pool is applied to go from an unbound time series to 40 features. The 40 features are used to 

classify a single diagnosis. 

 

A diagram of our network architecture can be found in 

Figure 1. A different network is trained for each possible 

classification. The networks are programmed using 

TensorFlow [5]. Here, we describe in detail the input, 

hidden, and output layers. 

The input data of the network is a 12-lead ECG signal 

of variable duration sampled at 500 Hz. Nearly all of the 

training data is sampled at 500 Hz. Signals sampled at 

harmonics of 500 Hz are simply resampled by only 

sampling every i-plus-1-th sample for the i-th harmonic. 

Signals of any other frequency are resampled using Scipy’s 

fft resampling method [6].  Signals are crudely cleaned to 

remove enormous outliers – any sample that deviates from 

zero by over 10.5 standard deviations is replaced by the 

sample at the previous time step. Each signal is scaled by 

3.5 standard deviations. 

The hidden layers of the network all follow the same 

pattern – apply convolutional layer (rectified linear unit  

activation, see Figure 1 for size of layers), then down-

sample using a max pooling layer (see Figure 1 for size of 

pools). This pattern is repeated to down-sample the 500 Hz 

signal to 5 Hz. We also employ a skip connection that 

simply down-samples the input layer using max pooling 

without any convolutions. The final max pooling is a 

global max pool. This allows us to derive 40 features from 

a variable length time series. We then apply a fully 

connected hidden layer, then a single class output layer 

with a sigmoid activation. In summary, several 

convolutional and max pooling layers “down-sample” the 

original series. 

After the original 12 leads are down-sampled to 5 Hz 

and 40 features, a global max pool transforms the time-

series to a set of 40 features, regardless of time-series 

length. A fully connected layer is applied along with an 

output layer. Long short-term memory (LSTM) was tried 

in place of the global max pool. It did not improve 

performance and increased training time. 

To train each network, we first split our data into 

training (80% of all data) and validation (20% of all data) 

sets. Each network is trained on an equal number of 

positive and negative samples. The Adam optimizer [7] is 

used with a binomial cross-entropy loss function and a 

batch size of 1. The validation data is scored every 6800 

batches. Training continues until the validation score fails 

to improve 6 consecutive times. The model with the best 

validation score is used. We use the geometric mean of F-

Beta and G-Beta scores to score our validation data (3). 

Let TP, FP, and FN be the true positives, false positives, 

and false negatives, respectively. 
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2.3. RPS-GMM 

Our second method is the RPS-GMM method proposed 

in [8], [9]. This method captures the natural measure of the 

attractor generated by the heart.  Takens shows that a signal 

measured from a system can be used to create a state space 

topologically equivalent to the original state space of that 

system [10]. The manifold on which the state trajectory lies 

is modelled statically using a GMM, where a GMM is a set 

of multidimensional Gaussians whose means and 

covariances are estimated using expectation maximization 

[11]. 

To form the RPS, the dimension of the space, which is 

the number of samples of the signal, the ECG in this case, 

is calculated using the global false nearest neighbours 

method. We use the dimension of 11 learned in [8]. The 

second parameter is the lag between signal samples, which 

was learned experimentally on the training set. We use a 

lag of four. Thus, a lead of the ECG is embedded in an 11-

dimensional space with lags of 4 between samples. Let xn 

be the nth point in the ECG signal, d be the dimension of 

the RPS, and   be the time lag. 
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is a point in the reconstructed phase space. 

 

Figure 2. The x-axis is lead 1 of the ECG from record 

A0001. The y-axis is that signal delayed by 4 samples. The 

gray points are the points in the RPS. The ellipses are the 

one standard deviation contours and the cords are in the 

direction of the eigenvectors of the covariance matrices. 

 

Let p(x) be the probability of a point in the GMM, M be 

the number of mixtures, wm be the mth weight, and N be the 

multidimension Gaussian mixture. Let μ  be the mean of a 

Gaussian and Σ  be the corresponding covariance matrix. 

A GMM is defined as 
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A multivariate RPS is generated using all 12 spaces and 

a 16 component GMM with full covariance mixtures was 

learned on each class of ECG signals. An example two 

dimensional RPS-GMM is shown in Figure 2 for the signal 

shown in Figure 3. 

 

 
Figure 3. Z-scored time series of lead 1 from record A0001. 

The signal is sampled at 500Hz 

 

Test signals are classified by embedding them in the 

same structured space as the original RPS. The GMM with 

the maximum likelihood is selected as the class. 

 

3. Results 

We achieved a final score of 0.492. We did not officially 

score due to a late submission of a preprint of this paper. 

Our methods were otherwise in line with competition rules.  

These results are for the CNN. The RPS-GMM model 

entries were not scored because they exceeded the allowed 

training time limit. 

 

4.  Discussion and conclusion 

Due to the fast-paced nature of this competition, there 

are several ideas that we were not able to try. We trained 

individual models for each classification because we found 

training a single model with multiple outputs to be 

unstable. Given the success of other 1D-CNNs in 

predicting diagnoses using a single model with multiple 

outputs [4], we expect our problems training could be 

remedied with more time tweaking hyperparameters. This 

would have allowed us to create a single larger network 

while remaining within the training time limit of the 

competition. 
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One of the biggest draw backs of our methods is their 

generic use of the time series. No specific features related 

to each arrhythmia where used. We feel this could be 

especially important for ST related heart arrythmias. 

Future work will include addressing the computational 

complexity for the RPS-GMM approach. This will require 

modifications to the expectation maximization algorithm. 

Our last step is to ensemble the RPS-GMM with the CNN. 
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