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Abstract

In this study, our team ”NTU-Accesslab” present a deep
convolutional neural network (CNN) approach, called
CNN-GAP, for classifying 12-lead ECGs with multilabel
cardiac abnormalities. Additionally, Class Activation
Mapping (CAM) is employed for further understanding the
decision-making process of this black-box model, making
the model more explainable.

The CNN-GAP model consists of 12 layer Conv Blocks
along with Batch Normalization layer, Global Average
Pooling and Fully Connected layer with sigmoid activa-
tion. To deal with the data imbalance problem, we over-
sample the minor datas. In the training stage, we ap-
plied Macro observed score loss (Macro-Obs) instead of
the conventional Weighted Cross entropy loss (WCE), and
we have shown that this results in higher challenge scores.
Additionally, we augmented datas by randomly scaling
datas to get better scores and prevent model overfitting.
Our method achieved a challenge score of 0.58 on the val-
idation set, but was unable to score and rank on the test
set, due to a failure of the algorithm on the fully hidden
dataset.

1. Introduction

The electrocardiogram (ECG) is a representation of
electrical activities of heart that can be measured non-
invasively. 12-lead ECG is then obtained through placing
ten electrodes on patients’ limbs and wrists, and presents
the heart’s electrical potential from twelve different angles.
ECG is widely used in clinical diagnosis. A variety of
cardiac abnormalities, such as ventricular fibrillation and
atrial fibrillation, can be detected through analysis of ECG.
Early treatment of cardiac disease can significantly reduce
morbidity and mortality rate. However, manual interpreta-
tion of ECG is time consuming, prone to error and requires
person with high level of training.

Therefore, in the past, numerous approaches were pro-
posed to interpret and classify ECG automatically. Some
use hand-crafted features such as R-R interval and heart

rate variability (HRV), while others utilize neural net-
work’s feature engineering ability. Yet, these approaches
have limited applicability since they only classify ECG
into a few classes and are only tested on small and rela-
tively homogeneous datasets.

The 2020 PhysioNet/CinC Challenge [1] aims to ad-
dress this challenging problem and encourages participants
to develop an algorithm that can classify 12-lead, variable
length ECG from multiple sources into 27 classes. In this
challenge, we have proposed a end-to-end, interpretable,
deep convolutional neural network (CNN), for the auto-
matic classification of ECG signals.

2. Methods

2.1. Data description

12-lead ECG recordings are a mixture of 6 datasets
from multiple sources across different countries (Table 1).
Each ECG recording has one or more labels from different
types of abnormalities in SNOMED-CT codes, and only
27 classes are scored in the challenge (3 of them are equiv-
alent class, so only 24 classes are under classification).

Table 1. Data profile for the training set.
Dataset Sample freq. Duration Num. of

(Hz) (s) records
PTB-XL 500 10 21837

CPSC-Extra 500 10 - 98 3453
CPSC 500 9 - 118 6877
PTB 1000 38.4 - 120 516

Geogia 500 10 10344
StPetersburg 257 1800 74

2.2. Data preprocessing

• Train test split: train-test set splitting is done separately
on each class of single label data to make the label distri-
bution on training and testing set more similar.
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Figure 1. Model architecture

• Long data slicing [2] & Zero padding: If the data has a
length over our desire clipping length (10 sec.), we clip the
data from the head, middle, and end. By doing this, we can
increase the amount of training data. As for the data with a
length smaller than our desire length, we pad zeros on both
sides.

• Remove baseline: Since some datasets have a non-zero
and severe skew baseline problems, we apply linear regres-
sion to the 10 sec. clipping data to deal with this problem

2.3. Network architectures

The CNN-GAP model (Fig. 1) is consist of 12 Convo-
lutional blocks, each with Batch-normalization and ReLU
activation, Global Average Pooling and Fully Connected
layer with sigmoid activation.

2.4. Training techniques

• Data augmentation: random scaling 0.5 to 2.5 with uni-
form probability on the amplitude of the data.

• Loss function: We implement two types of loss func-
tions. First, the weighted binary cross entropy loss
(WBCE), with ratio of positive and negative samples as its
weight, is applied. Second, the Macro observe score loss
(Macro-Obs) is applied. The Macro-Obs loss is calculated
as follows:

p: prediction of the model
t: true label of the data
W : weighted matrix provided by organizers
�: element-wise multiplication
⊗: tensor product
N =

∑
per batch(1− t)� p+ t (Normalize factor)

A = pT ⊗ t (modified confusion matrix without normal-
ization)
Anorm =

∑
in batch direction(A/N)

Macro-Obs =
∑

(Anorm �W )

Figure 2. CAM generating flow.

2.5. Class activation mapping

Zhou et al. [3] generates the class activation maps
(CAM) using the global average pooling (GAP) in CNNs.
Class activation map for a particular class indicated the re-
gions in the image used by the CNN to identify that cate-
gory. Same technique can also be applied in ECG detec-
tions [4]. The procedure for generating CAMs is illustrated
in Fig. 2.

As illustrated in Fig. 2, GAP outputs the spatial average
of the feature map of each unit at the last CNN layer. A
linear combination of these values is then used to generate
the final output. Similarly, we can compute a weighted
sum of the feature maps of the last CNN layer to obtain
the CAMs.

Assume that fi(.) represents the function of the deep
CNN in channel i, wij represents the weight of the fully
connected layer for channel i and class j, and bj is the
bias of class j. Then, the output value of class j under
no activation is

∑
(wij × avg(fi(.))) + bj , which can

also be express as avg(
∑

(wij × fi(.))) + bj . Notice that∑
(wij × fi(.)) is exactly the CAM of class j; therefore,

the spatial average of the CAM is exactly the output values
with bias. With the spatial information reserved, the high
activated value in CAMs help to understand the decision-
making process of the black-box model. CAM techniques
can also be applied to identify the temporal location for
cardiac abnormalities.

For instance, Fig. 3 shows that the waveform of lead-I
(the upper waveform in the subfigure) and its correspond-
ing CAM (the lower waveform in the subfigure). If the
value of CAM is larger than a threshold, then we marked
the region of the original data red. We have shown that
the marked region highly activated the models output, also
CNN model preserves the spatial information. Therefore,
we can see how the black-box model makes its decision by
observing these highly activated region.
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If this region is same as human’s perspective for iden-
tify the cardiac abnormalities, then the model might have
learned the correct information. If the region is no the same
as what we expect to see, then we human might be able to
learn something new for identify the abnormalities from
the model.

3. Results

Table 2 shows the challenge score under different model
architecture and loss functions in the self-divided valida-
tion set (denoted as ’Valid. 1’) and the challenge’s valida-
tion set (denoted as ’Valid. 2’). We can see that Macro-Obs
loss outperforms WBCE loss.

Table 3 shows the challenge scores of some high-
ranking teams and ours for the hidden test sets. We can
see that our score is competitive with these teams.

Table 4 shows the accuracy and F1 scores of each clasess
on the validation set. We can see that data imbalance prob-
lems cause minor classes in the train set gets extremely
low validation accuracy no matter which loss function are
applied. Additionally, when applied Macro-Obs loss, we
can see that the minor classes gets even worse performance
compared with WBCE loss. That is because the challenge
loss would penalize the minor classes.

Table 2. Results of different loss functions
Loss function Valid. 1 score Valid. 2 score

WBCE 0.549 0.544
Macro-Obs 0.582 -

∗Missing validation score is due to late submission.

Table 3. Results for hidden cases
Team Valid. Test Test Test Full

score 1 2 3 Test
Rank 1 0.587 0.761 0.558 0.492 0.533
Rank 7 0.586 0.643 0.574 0.298 0.417

Rank 11 0.435 0.556 0.418 0.290 0.354
Ours 0.544 0.725 0.510 - -

∗Test set 3 contains sample freq. not present in the
train set. Our code did not handle this sample freq.,
thus not reproducible in this case.

4. Discussion

By observing the CAM, we sum up two issues. First,
data corruption problems cause the model to learn wrong
cardiac abnormalities pattern. Second, the model does not
learn the abnormal region as number of classification type
increase.

Table 4. Results of each classes (on validatation set)
F1 F1 Num.

SNOMED Acc. (Macro- (WBCE) of
Obs) records

270492004 0.495 0.445 0.327 2085
164889003 0.657 0.638 0.555 3132
164890007 0.097 0.103 0.219 233
426627000 0.550 0.429 0.361 406
713427006 0.645 0.642 0.559 3241
713426002 0.204 0.225 0.200 1080
445118002 0.267 0.225 0.194 1170
39732003 0.348 0.310 0.272 3961
164909002 0.359 0.363 0.352 861
251146004 0.014 0.022 0.077 356
698252002 0.026 0.036 0.091 662
10370003 0.312 0.441 0.781 212
284470004 0.384 0.401 0.312 1897
427172004 0.051 0.066 0.079 536
164947007 0.092 0.089 0.122 217
111975006 0.190 0.205 0.288 993
164917005 0.000 0.000 0.080 678
47665007 0.033 0.049 0.173 273
427393009 0.011 0.019 0.175 837
426177001 0.482 0.496 0.341 1636
426783006 0.707 0.690 0.598 14884
427084000 0.509 0.518 0.452 1783
164934002 0.206 0.236 0.212 3072
59931005 0.101 0.088 0.085 718

For the first issue, ECG corruption problems, including
abnormal spikes or fluctuations would mislead the models
decision. For instance, the waveform in Fig. 3 is obviously
corrupt, some pre-processing technique such as filtering or
clipping can be applied to remove these. Some would say
that the CNN-based model has the capacity to do filtering
and clipping, and additional preprocessing will cause in-
formation loss thus get worse performance. However, by
CAM, we see that the model focus on the noisy part to
make decision, so it did not learn to filter out the abnormal
spike or noise.

For the second issue, we find that the model did learned
the abnormal pattern in PhysioNet Challenge 2017 (4
classes) dataset, that is, most of the CAM is explainable
from human perspective. However, the CAM in CPSC
2018 (9 classes) gets more unexplainable. Even worse,
CAM in this challenge (24 classes) is beyond human un-
derstanding of arrhythmia. For instance, the upper-left of
Fig. 4 is a normal sinus rhythm (NSR) labeled data, but the
abnormal part of the waveform is more activated. How-
ever, the overall performance does not decrease that much,
that means the CAM still contains some important infor-
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mation. By observing these unexplainable CAMs, we hu-
man may be able to learn something new to identify the
cardiac abnormalities.

Apart from the unexplainable CAMs, there are still
some explainable cases. For instance, the upper-right of
Fig. 4 is a complete right bundle branch block (CRBBB)
labeled data. The Right bundle branch block is focused
by the model, and the most activated region has the largest
RBBB pattern. The lower-left of Fig. 4 is a atrial fibril-
lation (AF) labeled data, and the P-wave region is focused
by the model. The lower-right of Fig. 4 is a bradycardia
(Brady) labeled data, and the low heart rate region is acti-
vated.

Figure 3. Lead-I and CAM waveform of corrupt data

Figure 4. Lead-I and CAM waveform of some correctly
classified data

5. Conclusions

We trained a deep convolutional neural network to clas-
sify 12-lead ECGs as 24 classes. We apply the Macro-Obs
loss to get the challenge score 0.58 on the validation set 1,
which outperforms the conventional WBCE loss, but was
unable to score and rank on the validation set 2 and test set,
due to late submission and a failure of the algorithm on the
fully hidden dataset. The final performance is likely to be
lower than the validation score. The class activation map-
ping is generated for each ECG to visualize the region of
the waveform that the model was focusing on when mak-
ing the decision. We demonstrate some explainable CAM

from human perspective. Also, we show that the black box
model does not learn the abnormalities same as human per-
spective as number of classification classes increase. By
observing these CAMs, we human may be able to learn
something new to identify the cardiac abnormalities.
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