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Abstract 

ECG is the most commonly used diagnostic tool for 

identifying cardiovascular disease. However, manual 

interpretation of ECG is inefficient and requires medical 

practitioners with a lot of training. In this work we 

proposed two deep learning models to classify ECG 

automatically. One model had a hybrid architecture of 

convolutional neural network and recurrent neural 

network. The other model contained deep residual neural 

networks. The output layer of both models was activated 

by a sigmoid function to get classification results. We 

manually located all the premature beats in each ECG 

recording and selected 10 s segments which contained at 

least one premature beat as training samples. Recordings 

without premature beats were randomly split into 10 s 

segments. The models were then trained on these ECG 

segments for 30 epochs with an optimizer of Adam. After 

training, the model performance was evaluated on the 

hidden validation set and test set maintained by the 

challenge organizers. Our team, nebula, achieved a 

challenge validation score of 0.526, and full test score of 

0.109, but was not ranked due to omissions in the 

submission. The results show potential application value 

in automatically classifying 12-lead ECG. 

 

1. Introduction 

Cardiovascular diseases (CVD) are the number one 

cause of death in the world, killing more than 17 million 

lives each year [1]. Electrocardiogram (ECG), reflecting 

the electrical activity of the heart, is the preferred method 

for screening and diagnosing CVD. The standard ECG has 

12 leads and provides more diagnostic information than 

single lead ECG. Six of the leads are called “limb leads” 

which show information of electrical activity transmission 

on the coronal plane. The other six leads are called “chest 

leads” which show electrical transmission in the transverse 

plane. The doctor makes a diagnostic conclusion by 

checking the ECG beat by beat and lead by lead. The ECG 

interpretation process is time consuming and tedious, and 

it is prone to errors. Computerized interpretation of ECG 

based on expert systems can reduce the workloads but it 

was reported to have a 5.8% higher error rate than average 

cardiologists [2]. So more advanced algorithms are 

required for automated ECG interpretation. 

Recently, deep learning has achieved great success in 

computer vision, natural language processing and speech 

recognition. With this cutting edge technique, researchers 

have explored many methods for automatic ECG 

classification [3-9]. These methods mainly involve 

convolutional neural networks (CNN), recurrent neural 

networks (RNN), or a combination of both. Hannun et al. 

developed a deep residual neural network to classify 

single-lead ECG into 12 classes [3]. Their model got more 

accurate results than average cardiologists. Faust et al. 

proposed an LSTM model to detect atrial fibrillation and 

achieved 98.51% accuracy [8]. Xiong et al. used 21-layer  

convolutional recurrent neural network to classify single 

lead ECGs in the 2017 PhysioNet/CinC Challenge and got 

F1 score of 0.82, which is among the best scores [9]. 

However, there are still few studies on the classification of 

12-lead ECG. This may be due to the lack of appropriate 

database of 12-lead ECG. The PhysioNet/Computing in 

Cardiology Challenge 2020 provides more than 43,000 

ECG recordings with diagnostic labels [10]. This study 

aims to develop an automated method for classifying 

cardiac abnormalities from 12-lead ECGs. 

 

2. Methods 

2.1. Data preprocessing 

Data values of all recordings were divided by their 

corresponding amplitude resolutions with the unit of mV. 

Then all samples were resampled to 500 Hz with fast 

Fourier transformation. Each lead of every recording was 

subtracted by its mean value. There are some abnormal 

spikes [11] with the values greater than 20 mV in the 

recordings from the dataset of China Physiological Signal 

Challenge in 2018 (CPSC2018). These spikes were 

examined and replaced with normal values next to them. 

 

2.2. Data relabeling 

Some labels were considered as the same diagnosis 

according to scoring algorithm provided by the challenge 

organizer. Complete right bundle branch block (CRBBB) 

and right bundle branch block (RBBB) were merged as 
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RBBB. Premature atrial contraction (PAC) and 

supraventricular premature beats (SVPB) were merged as 

PAC. Ventricular ectopics (VEB) belongs to unscored 

label, but it has the same medical meaning with Premature 

ventricular contractions (PVC) and ventricular premature 

beats (VPB). So these three labels were merged together as 

PVC. For each unscored label, if the total number of ECG 

samples with this label was less than 300, we removed this 

label from all recordings. 

 

2.3. Premature beats locating 

For PAC or PVC, the premature beat may only occur 

once in a very long recording. So we manually located all 

the premature beats and used segments that contained at 

least one premature beat for training. 

 

2.4. Feature extraction 

The feature extraction process was carried out according 

to the sample classifier which provided by the challenge 

organizer. Briefly, all the ECG recordings were band-pass 

filtered between 0.5-15 Hz to remove baseline wandering 

and some noise. Then ECG peaks were detected based on 

Pan-Tomkins algorithm [12]. The statistical features about 

the peak values and peak intervals including mean, median, 

standard deviation, variance, skewness, kurtosis were 

calculated. We extracted features from lead I, II, III and got 

12 features from each lead. Counting age and gender, each 

recording generated a total of 38 characteristics. 

 

2.5. Deep learning models architecture 

Two models were proposed in this study. The first 

model consists of five CNN layers, three max pooling 

layers, two stacked bidirectional GRU layers and two fully 

connected layers (Fig. 1). Sigmoid was used as the 

activation function in the last layer and Rectified Linear 

Unit (ReLU) was used elsewhere. The second model had 

two parallel residual neural networks and each used the 

residual neural network (ResNet) block as a basic block 

 

 
 

Figure 1. The architecture of Model 1. The tensor dimensions of layer’s output are shown and t denotes the 

samples of the input ECG.  

 
 

Figure 3. The architecture of Res-SENet. The letter s means 

strides. 
 

 
 

Figure 2. The architecture of Model 2. The tensor 

dimensions of layer’s output are shown and t denotes the 

samples of the input ECG. 
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(Fig. 2). Each parallel Residual neural network contains 1 

CNN layer and 6 ResNet blocks, and the last 4 blocks used 

Squeeze-and-Excitation networks (SENet) to pay more 

attention to meaningful feature channels (Fig. 3). The 

outputs of ResNet blocks were compressed by using a 

global average pooling layer and a global max pooling 

layer simultaneously. The last layer used a fully connected 

layer with sigmoid as activation function. For both models, 

their input dimensions were not fixed at a certain number, 

so both models accepted ECG data with variable lengths. 

 

2.6. Model training 

The challenge data were randomly shuffled and 80% of 

the data were put into the training set and the remaining 

were used as our own test set. Our models were trained 

with the training set using 5-fold cross validation strategy. 

Although our models accepted data with various length, 

data with fixed length can take the most advantage of 

parallel processing power of GPU and reduce a lot of 

training time. Thus, we used 10 s segments for training in 

this study. If a recording was labelled as PAC or PVC, the 

segments that contained at least one premature beat were 

used. For other recordings, the segments were randomly 

chosen. These segments were further processed for data 

augmentation on the fly. Data augmentation techniques 

included adding random Gaussian noise, combining a 

random sinusoidal signal [13] and shifting random baseline. 

The models were trained using Adam algorithm with the 

learning rate set between 1e-3 and 1e-4. Total epochs were 

set at 30. 

 

2.7. XGBoost classifier 

Extreme gradient boosting (XGBoost) is an optimized 

decision trees based gradient boosting framework [14]. We 

trained 24 XGBoost classifiers to predict all the scored 

labels with normal features and deep features. Specifically, 

deep features included the output of the second last layer 

of the first model and the output of the last layer of the 

second model. 

 

2.8. Model inference 

The ECG recordings were pre-processed as described at 

section 2.1. Then the data were fed into the deep learning 

models. The average values of two models’ outputs were 

used to make a classification with threshold set at 0.5. If 

XGBoost classifiers were used, normal features and deep 

features were fed into 24 separate XGBoost classifiers to 

make predictions for 24 scored labels. 

 

3. Results 

After models training, we evaluated their performance 

on our own test set. As shown in Table 1, the best method 

was the ensemble model which combined the decisions of 

model 1 and model 2. It had a challenge score of 0.560. 

XGBoost classifier had a challenge score of 0.546 which 

was lower than that of model 2 and ensemble model.  

The models’ performance was further evaluated on the 

hidden validation set. As shown in Table 2, the ensemble 

model got a challenge score of 0.526 and XGBoost 

classifier had a challenge score of 0.517.  

Finally, the ensemble model was evaluated on the 

official full test set. As shown in Table 3, the model 

received challenge scores of 0.736, 0.086 and 0.052 from 

three test databases respectively. And our team got the final 

challenge score of 0.109. 

 

4. Discussion and Conclusions 

The results shown in Section 3 indicate that the model 

with deeper layers is more effective in classifying ECG 

abnormality than the model with shallower layers. Model 

1 is simple and contains 5 CNN layers with a small 

receptive field. It can’t extract and identify complex 

features. However, this simple model runs fast and can be 

used as a baseline model. Model 2 has two parallel deep 

residual neural networks and each has 37 CNN layers. One 

major difference between the two parallel deep residual 

neural networks lies in different convolution kernels and 

different filters. So they have variant receptive fields. 

Table 1. Performance of proposed models on our own 

test set. 

 

Methods Challenge Score 

Model 1 0.534 

Model 2 0.558 

Ensemble 0.560 

XGBoost 0.546 

 

Table 2. Performance of proposed models on the 

official validation set. 

 

Methods Challenge Score 

Ensemble 0.526 

XGBoost 0.517 

 

Table 3. Performance of the ensemble model on the 

official test set. 

 

Test set Challenge Score 

Database 1 0.736 

Database 2 0.086 

Database 3 0.052 

All 0.109 
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Another difference lies in the first two ResNet blocks of 

both branches. One branch uses 1 dimensional CNN layers, 

whereas another branch uses 2 dimensional CNN layers. 

The 2 dimensional CNN layer is designed to make sure that 

the same kernel walks through each lead and extract 

features common to different leads. The ResNet like 

structure has shortcuts that jump over different layers, 

which can avoid the problem of vanishing gradients during 

training and make full use of the features extracted by 

different convolutional layers. Furthermore, SENet, which 

won the first place in ILSVRC 2017 classification 

challenge [15], recalibrates channel-wise feature 

importance and makes the model more effective. So model 

2 got much better performance than model 1. 

Although XGBoost classifiers had made use of age, sex, 

peak related features and deep features, their performance 

was not as good as model 2. One possible reason is that 

these features are not good enough to make a classifier with 

high quality. Further features about frequency, HRV and 

morphology may be required. The other reason is that we 

used the default parameters to train XGBoost classifiers, 

and these default parameters were not optimal, which 

might lead to overfitting. 

There are several limitations in our study. Firstly, an 

ablation study has not been carried out. Our proposed 

models are not optimal and could be further tuned. 

Secondly, we trained our models on 10 s segments and 

evaluated them on various long samples. It may attenuate 

the overall performance. Thirdly, the generalization of our 

models needs to be improved since they had a big 

difference in performance on different databases of the 

official test set. 

In conclusion, the presented deep learning models 

showed potential application value in automatically 

classifying 12-lead ECG. 
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