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Abstract

Early prediction of sepsis can help to identify potential
risks in time and help take necessary measures to prevent
more dangerous situations from occurring. In
PhysioNet/Computing in Cardiology Challenge 2019, we
integrate Long Short Term Memory (LSTM) recurrent
neural network and ensemble learning to achieve early
sepsis prediction. Specifically, we tackle the problem of
class imbalance and data missing firstly, and then we
manually extract features according to the prior
knowledge from the medical field. In addition, we regard
the prediction of sepsis as a time series prediction problem
and pre-train LSTM-based models as feature extractors to
obtain the “deep” features on time series that might be
related to the onset of sepsis. Manual features and “deep”
features are then used to train prediction models under the
framework of ensemble learning, including Extreme
Gradient Boosting (XGBoost) and Gradient Boosting
Decision Tree (GBDT) regressor. The final normalized
utility score our team (UCAS_DataMiner) have obtained
was 0.313 on full hidden test set.

1. Introduction

Sepsis and septic shock are important clinical problems
among critical patients, its pathogenesis is complex and
usually involves infection, inflammation, immune
dysfunction. Sepsis can further develop into severe sepsis
and septic shock, and the extremely high morbidity and
mortality rate have become a serious medical burden.
Systemic inflammatory response syndrome (SIRS) criteria
has been proposed for the diagnosis of sepsis. However,
the SIRS criteria were proved to be inadequate in
specificity and sensitivity. So the definitions for sepsis and
septic shock were revised based on the epidemiology
conducted by the Society of Critical Care Medicine
(SCCM) and the European Society of Intensive Care
Medicine (ESICM) in 2016. Sepsis was then defined as
life-threatening organ dysfunction caused by a host
response to infection according to this criteria (sepsis 3.0)

[1].

Sepsis causes a large mortality rate in infected patients,
especially those who are not recognized and treated
promptly. Since the worsening of sepsis is rapid, early
prediction can help doctors to take proper treatment to
control it, prevent complications and reduce the malignant
consequences of shock and even death that may result from
the further development of sepsis. In recent years,
researches on sepsis have continued to deepen and enhance,
and clinical practices and evidences have increased.
Electronic health records (EHRs) and machine learning
combined approaches are valid ways to achieve early
sepsis prediction, support vector machine [2], Bayesian
network [3] and some other algorithms have been proposed
to early predict the sepsis and help doctors to provide
effective medical care and intervention.

The Sequential Organ Failure Assessment (SOFA)
score is a widely used method for assessing human or even
porcine organ failure [4]. It has also received attention in
the research of in-hospital mortality , the relationship
between in-hospital mortality and SOFA has been studied
and high correlation was reported in some literatures [5, 6].
SOFA scoring system is a new approach for organ failure
evaluation and sepsis diagnosis, it is also a critical indicator
in sepsis 3.0, a higher SOFA score is associated with an
increased probability of mortality, score of 2 points or
more means the patient's mortality rate can reach 10%. If
the septic shock is further developed, the mortality rate can
reach 40%. For patients who have recovered, there is still
a high probability of suffering from sequelae.

The goal of PhysioNet/Computing in Cardiology
Challenge 2019 is to achieve early prediction of sepsis
using multiple clinical parameters, result will be evaluated
by the utility score defined by organizers [7]. We proposed
an algorithm to achieve the target in this paper, we firstly
pre-process the data and manually extract the SOFA and
SIRS related features according to the prior knowledge
from the medical field. In addition, we construct a structure
based on LSTM recurrent neural network, a deep learning
method, to automatically learn potential features based on
training dataset to mine information on time series. Finally,



several ensemble learning algorithms, including Extreme
Gradient Boosting (XGBoost) and Gradient Boosting
Decision Tree (GBDT) models [8, 9], are established as
basic learners to gain various predictions, which will be
integrated to enhance the accuracy and reduce the bias of
final prediction result.

2. Methods

2.1. Data preprocessing

The dataset contains 40 dimensions of original data
( Fray ) collected per hour from a total of 40,336 subjects,

these records are labeled with 0 or 1 for supervised learning,
and the sepsis labels of the data have been shifted ahead by
six hours, so we don't need to make any adjustments to the
labels.

2.1.1. Data imputation

There are a large number of missing values in the
original data, usually due to the absence of related records.
If we use the overall mean to replace them, the information
related to the individuals can’t be revealed. However, it is
not feasible to use the individual's mean to fill, due to the
fact that we can't get the data after time t in practical
situations. So the missing values are filled with its prior
adjacent value in the proposed algorithm.

2.1.2. Dataimbalance

Data imbalance is another issue that needs to be
considered. According to the statistical results, the ratio
between labels 0 and 1 exceeds 50, which means serious
data imbalance. In order to reduce the impact of data
imbalance on the results, we discard the data with the label
0 with a probability of 1/5 in the data reading phase. The
data will be further randomly down sampled again while
training, so that the 0 and 1 classes can keep balance. On
the other hand, the data perturbation enhances the diversity
of the model and contributes to the subsequent ensemble
learning.

2.2.  Features extraction
2.2.1. Features based on definitions of sepsis

The latest sepsis 3.0 criteria defines the gSOFA and
SOFA scores. qSOFA criteria is simple (Respiratory
rate>=22/min and SBP<=100 mmHg), so it provides a
quick diagnostic method for doctors and can help promote
diagnostic efficiency. We convert the rules defined above
into binariztion features, that is, when a parameter (such as
blood pressure, respiration rate, etc.) exceeds the defined
threshold, this feature will be recorded as 1, otherwise it is

recorded as 0. We also manually calculate the SOFA score
according to the sepsis 3.0 criteria [1]. It should be noted
that some parameters are missing, such as Fraction of
inspired oxygen (FIO2), so the SOFA we obtain is actually
a pseudo-SOFA, however, intuitively we believe that
higher pseudo-SOFAs are still associated with sepsis
prediction. In order to further obtain the trend of all
parameters defined in the criteria throughout the
measurement process, the ratio between the current value
v, at time t and the baseline value v, of each individual

is calculated, considering the missing of some values, the
baseline value is firstly initialized to -99, and the ratio will
be set as follows:
0, v, ==-99
ratio, =4 (v, —V,) /vy, V,!=-99 and v, != Null (1)
ratio_,, Vv,!=-99 and v, == Null
All the above features obtained are denoted as F, .

SIRS is another criteria that has been used in the
detection of sepsis, although it has been replaced by the
latest criteria, it may still remain useful for the
identification of infection. So we convert the rules
according to its definition into binariztion features, and the
ratio between v, and v, is also calculated, and these

features are denoted as F .

2.2.2. LSTM-based features

RNN based models have achieved great success in
numerous fields especially time series related problems,
the foremost advantage is that it can easily extract the
dependency information on the time series. Long Short
Term Memory (LSTM) is a specially designed recurrent
neural network, which is mainly used to solve the problem
of vanishing gradient of traditional recurrent neural
networks that limit long-term dependence and has been
widely applied in numerous applications [10-12]. The
reason we use LSTM is that the onset of sepsis is a
sequential process, and thus it should be not only related to
the features extracted from the current time, but also should
be related to the information extracted from the previous
hours.

In detail, we firstly stack multiple LSTM layers with
fully connected (FC) layers together to form a deep
structure with powerful skill of feature representation, and
then we pre-train this model on a subset of training dataset,
the training process is monitored manually to prevent both
under-fitting and over-fitting. Finally, we remove the
output layer and only retain the last hidden layer as the
feature extractor to extract LSTM-based features.

2.3. Model architecture

The structure of the proposed algorithm is shown in
Figure 1. Data are randomly divided by the ratio of 9:1 for



training and testing. LSTM-based models are firstly
trained on a subset of 10,000 subjects from training dataset.
For the remaining subjects, the data will be forwarded to
the pre-trained LSTM extractor and gain output F g, -

In order to enhance the variability of the models, we
construct various features subsets. Specifically, not all
features are entered into the level-2 regressor, but a subset
of them are selected and concatenated together as the input
vector to the regressor. The final feature subsets including:
Fraw, Fraw+FLstm, Fraw+Fsora, Fraw+Fsirs,
Fraw+Fsirst+FsoratFLstm. As for the level-2 regressor, we
tried support vector regression (SVR), linear regression,
etc. Finally, the XGBoost and GBDT models outperformed
than others, so we trained 10 models based on these two
architectures and ensemble the results to get the final
probability as output.

The LSTM-based features extractors are implemented
by Keras with TensorFlow backbend and level-2
regressors are implemented by Scikit-Learn package.

Softmax, Output
FC layer

BN, Relu, Dropout
FC layer

BN, Relu, Dropout
FC layer

Dropout Feature
LSTM layer extractor

Dropout
LSTM layer

Masking layer

Figure 1. The whole structure of the algorithm.
2.3.1. LSTM-based features extractor

Each LSTM-based model consists of P LSTM layers
and Q fully connected (FC) layers with Batch-normalized
(BN) and Dropout layers embedding. RELU is selected as
activate function except the output layer, and the last layer
use Softmax activation. Data will be firstly converted to a
tensor like [sample,timestep, dimension] . However, when
t < timestep , we can't construct the input tensor with
timestep , Keras provides effective approach, which is
called "Masking" layer, to tackle this problem. So we add

a "Masking" layer ahead of the input layer to adapt to time
series with different time steps.

We enhance the diversity of LSTM extractors by
adjusting the hyperparameters of the model, for example,
using different timestep (The optimal timestep we chose

were 4 to 6 hours), adjusting the number of neurons in each
hidden layer or the number of hidden layers, and finally we
obtained N, basic “deep” features extractors.

We use binary cross-entropy loss as the optimization
target, and Adam is applied to the back propagation
process with initial learn rate of 0.001 to optimize it, and
Early-Stopping criteria is also used to prevent over-fitting.

2.3.2.  Ensemble learning

Various ensemble learning models have been proposed
and applied to different applications [13-15]. The
advantage of the ensemble learning is the ability to
combine multiple basic models to achieve an integrated
model for more accurate, stable and robust results.

Gradient Boosting framework boosts humerous weak
prediction models (such as linear model, decision tree) to
a more powerful one. XGBoost and GBDT are gradient
boosting machines based on tree model as the basic weak
predictor, they have been widely used in various
classification and regression tasks. Our experimental
results show that they also perform well in the task of
sepsis prediction. We use grid search to find the optimal
hyperparameters.

From the perspective of the overall algorithm, we can
further perform “"ensemble learning™. In detail, we regard
the level-2 regressor as a strong model (low deviation but
high variance) and make various predictions firstly by pre-
training multiple models with different structure, and then
we integrate them by simple averaging to obtain the final
results, as shown in Eq. 2.

4, BaseModel_Prob,

EnsembleProb = )’ N 2)
i=1

Where BaseModel_Prob, is the prediction probability
obtained by i-th model, N is the number of basic models.

3. Results and discussion

We verified and adjusted our algorithm on officially
published datasets A and B (including 40,336 subjects) by
5-fold cross validation, and the final normalized utility
score our team (UCAS_DataMiner) have obtained is 0.313
on full hidden test set (0.406, 0.373 and -0.215 on test set
A, B and C, separately). The cross validated averaged
utility score on XGBoost and GBDT regressor with
different features subsets were used to evaluate the
performance of each model, as shown in Table 1.

It is notable that different feature subsets and models do
not differ significantly in averaged utility score, yet they
provide different perspectives for the final ensemble model,
in other words, establish multiple feature subspaces that



are beneficial for ensemble learning, so the averaged utility
score has been improved to 0.401 in the ensemble model.
Actually, according to error-ambiguity decomposition [16],
the higher the accuracy and diversity of the basic model is,
the better the ensemble results. So the measures we
mentioned above, including randomly dividing the data for
training and testing, constructing 5 different feature
subsets, and increasing the diversity of the LSTM extractor,
are all for this purpose.

Table 1. 5-fold cross validated averaged utility score on
XGBoost and GBDT regressor with different features
subsets.

Features Averaged utility score
Subsets XGBoost GBDT
Fraw 0.387 0.385
Fraw+Fistm 0.385 0.386
Fraw+Fsora 0.389 0.379
Fraw+Fsirs 0.390 0.384
FrawtFistm+FsoratFsirs 0.380 0.382
Ensemble 0.401
4. Conclusion

In this paper, we propose a novel algorithm under the
framework of ensemble learning to integrate manual
features and LSTM-based “deep” features to achieve early
sepsis prediction. The current results on hidden test dataset
demonstrate the validity of the model, and we have
obtained a normalized utility score of 0.313 on full hidden
test set. Future work will focus on integrating more
features from the medical field and experimenting with
more machine learning methods to further improve the
accuracy, robustness of prediction.
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