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Abstract

The early prediction of sepsis in intensive care
units using clinical data is the objective of the Phys-
ioNet/Computing in Cardiology Challenge 2019. In this
paper, a machine learning approach is presented which
uses an optimized Random Forest for prediction of a septic
condition. After an initial data augmentation step, a cus-
tomized learning process is performed for the trees to con-
sider imbalance in the dataset. Finally, a feature reduction
is implemented and the forest is trimmed to 50 trees for an
optimal classification in terms of run time and accuracy.
Using a 10-fold cross-validation on the complete training
dataset, a mean utility score of 0.376 is achieved. In the
final submission, a normalized observed utility score of
0.296 on the full test set is achieved. Our team name is
The Septic Think Tank (final rank: 21).

1. Introduction

Every year about 6 million people die from the conse-
quences of resulting dysfunctions and multiple organ fail-
ures due to a sepsis [1]. Although sophisticated surveil-
lance systems which use electronic clinical data (e.g.
MEWS, qSOFA) are applied, a correct and accurate pre-
diction of a disease onset remains elusive [2]. Several stud-
ies have demonstrated that machine learning tools can de-
crease diagnostic uncertainties and identify septic patients
by accessing clinical data in real-time. In [3] a dynamic
Bayesian network was implemented to model the progres-
sion of organ failure. Furthermore, neural networks have
been used for state classification [4] and a sepsis progres-
sion estimator was implemented using support vector ma-
chines [5].
To encourage the development of new algorithms for an
early prediction of sepsis, the PhysioNet/CinC Challenge
2019 aims to address the problem by providing clinical
data from intensive care units [6]. In this work, a machine
learning algorithm based on the Random Forest (RF) clas-
sifier is described.

2. Methods

For classification, an ensemble of decision trees as im-
plemented in the MATLAB TreeBagger function is
used. This approach evaluates the results of many individ-
ual trees, which reduces overfitting and improve the gen-
eralization [7]. During both learning and prediction phase,
not-a-number (NaN) values are treated as individual miss-
ing information, i.e. a data point or a variable is only omit-
ted completely if all values are NaN. In the development
phase, 10-fold cross validation was used for algorithm op-
timization. For submission, the complete available dataset
was used for training and the resulting algorithm was sub-
mitted for evaluation on the hidden test sets.

2.1. Features and Feature Reduction

All 40 features from the dataset were used for prediction
without further preprocessing. In addition, at each time
step t, mean and standard deviation of the previous t∆ time
steps were calculated. Thus, a total of Nfeat = 120 candi-
date features were calculated. To reduce them, a straight-
forward elimination process was applied: In the prediction
step, each feature was once replaced by NaN and the “nor-
malized observed utility” (NOU) was calculated. Thus, a
feature’s importance is expressed by its reduction of NOU.

2.2. Data Augmentation

Without data augmentation, the dataset is severely im-
balanced: pooling Nrec = 40, 330 recordings of the train-
ing data (six recordings were discarded to allow for 10-fold
cross validation with an equal number of N ′

rec = 4, 033
patients), Nneg = 1, 524, 071 timesteps belong to the non-
septic state, while Npos = 27, 916 belong to the septic
state. According to the rules of the challenge, a positive
utility is achieved if sepsis is detected up to 12 hours be-
fore its actual onset and at max 3 hours late. Thus, all
timesteps within this range are labeled positive. After this
procedure, a slightly less imbalanced dataset is obtained
with N ′

neg = 1, 509, 992 and N ′
pos = 41, 995 respectively.



2.3. Imbalanced Random Forest Learning

After data augmentation, a ratio of r = N ′
neg/N

′
pos =

35.96 is obtained. To allow for unbiased learning, the fol-
lowing strategy is employed: In each iteration, N0 = 10
trees are learned using allN ′

pos positive data points as well
as an equal number of randomly selected negative data
points. The process is repeated brc = 35 times until (al-
most) all data points are used. All trees are aggregated to
form a forest with Ntrees = brcN0 = 350 trees.

2.4. The Sashiki Forest

To enforce causality, evaluation is performed using
a for-loop in the official phase of the challenge. The
MATLAB TreeBagger implementation shows a large
overhead when not executed in “bulk-mode”: Predicting
a randomly generated dataset with 40 features and 100
timesteps, we obtained a run-time of 3.8 seconds if the
predict function is called with some TreeBagger ob-
ject and a 100 by 40 feature matrix. If predict is called
with the same TreeBagger object but using a timestep-
by-timestep for-loop, i.e. executed 100 times with a sin-
gle feature vector, the whole prediction process took 288.8
seconds. Thus, the need to drastically reduce computa-
tional time arose. Moreover, reducing the ensemble’s com-
plexity might facilitate the understanding of its decision
process.

To optimize the RF, the following algorithm was devel-
oped. First, each tree is used individually to predict the
complete dataset. This leads to a prediction matrix Pi,j

with the dimension Ntimesteps × Ntrees containing a “1”
if tree j decides sepsis for timestep i and “0” otherwise.
Next, the sum of each row is calculated to obtain the un-
normalized base prediction vector

P̂ 0
i =

Ntrees∑
j=1

Pi,j . (1)

Now, for each tree j, a prediction vector P j is calculated,
in which that specific tree is left out of the prediction pro-
cess. This vector is normalized by the number of remain-
ing trees,

P j
i =

P̂ 0
i −Pi,j

Ntrees − 1
. (2)

Note that using this approach, only one subtraction and
one division is necessary for each tree and timestep once
the base prediction vector is calculated, significantly re-
ducing computational time. Next, the quality of prediction
q (j) is evaluated for each left-out tree using a pre-defined
threshold pth, the ground-truth Y and an evaluation func-
tion F (·),

q (j) = F
(
Y, P j > pth

)
. (3)

Finally, the tree jopt is identified whose omission led to the
maximum quality value,

jopt = argmax
j

q (j) (4)

and omitted in the next iteration. The process is repeated
with Ntrees → Ntrees− 1 and an updated P until only one
tree is left.

The obvious choice for F (·) is the supplied evaluation
function that calculates the NOU from [6]. However, it
is fairly computational expensive and has to be executed
Ntrees ·Ntrees/2 times in the tree-elimination process, ren-
dering it impractical for algorithm development. In the
2015 challenge [8], a modified accuracy function

MA =
TP+ TN

TP+ TN+ FP + w · FN
(5)

was used for scoring, where TP indicate true positive
and TN indicate true negative predictions. The parame-
ter w = 5 was used to particularly penalize false nega-
tive (FN) over false positive (FP) predictions of arrhyth-
mia alarms. In the current challenge, the same general
concept can be applied, since an undetected sepsis (i.e. a
FN prediction) also severely influences the NOU (and of
course patient outcome in a real application). In Figure 1,
an overview of the submitted algorithm is illustrated.
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Figure 1. Overview of the submitted algorithm.



3. Results and Discussion

3.1. Features and Feature Reduction

Using cross validation, t∆ = 4 h was found to achieve
optimal results. Figure 2 shows the features ranked by
importance in terms of NOU reduction. As can be seen,
the replacement of the 20 most important features (low-
est rank) leads to a sharp decrease in NOU, while the re-
placement of the 20 least important features (highest rank)
seems to increase it overproportionally. Thus, a subset of
N̂feat = 100 features (gray area) was used in the final im-
plementation.
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Figure 2. Features ranked by importance. A lower rank
indicates that the replacement of a feature with NaN values
decreases NOU more than a higher-ranked feature.

3.2. Trimming the Forest

First, the penalization parameter w was manually opti-
mized to obtain a computational-efficient surrogate for the
NOU. For this, the base prediction vector is normalized

P 0 =
P̂ 0

Ntrees
. (6)

Next, the threshold pth is varied from 0.4 to 0.7 and both,
NOU and MA with variable w are calculated for the pre-
dictions P 0 > pth. To optimize w, correlation of NOU
and MA is maximized. Figure 3 shows NOU and MA for
w ∈ 34, 44, 54. Standardization is applied for better vi-
sual comparison. As can be seen, NOU and MA match
best visually for w = 44. Additionally, a correlation coef-
ficient of ρ = 0.9955 is obtained while the calculation of
MA is about 5800 times faster compared to the MATLAB-
implementation of NOU.

Thus, tree reduction is conducted with MA and w = 44.
Figure 4 shows the results of the tree reduction procedure.
As expected, MA initially increases as more and more trees
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Figure 3. Comparison of Normalized Observed Utility
(NOU) and Modified Accuracy (MA) for different values
of the penalty parameter w over the prediction threshold
pth. Curves are standardized for better visual comparison.

are eliminated, i.e. as the number of trees is reduced. MA
plateaus for a number of approximately 50 to 100 trees. If
the number of trees is reduced beyond 25, a sharp drop in
MA is observed. Thus, in the final implementation, a total
of N̂trees = 50 trees is used.
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Figure 4. MA of the tree reduction process with w = 44.

In Table 1 the results of a 10-fold cross-validation on the
complete (augmented) dataset are shown. For the evalua-
tion, a mean NOU of 0.376 with a standard deviation of
0.023 is achieved. For the full hidden test set, a NOU of
0.296 was achieved for the final entry of our team The Sep-
tic Think Tank (final rank: 21). One can see that the results
for the test sets A and B do not deviate strongly from the
10-fold cross-validation. This indicates a generalization
process during the learning phase, so an overfitting of the
RF was prevented. Additionally, the results provide the ev-
idence that the hidden test sets A and B do not vary signifi-
cantly from the training data set. In contrast to this, a large



deviation can be observed for test set C. Here, significantly
varying features are assumed, which strongly influence the
prediction result of the RF.

Table 1. Results for 10-fold cross-validation and submis-
sion results on the complete dataset.

Fold AUROC AUPRC Accuracy f NOU
1 0.787 0.086 0.832 0.117 0.353
2 0.812 0.080 0.847 0.117 0.344
3 0.819 0.092 0.851 0.132 0.401
4 0.813 0.104 0.846 0.126 0.385
5 0.829 0.091 0.852 0.131 0.413
6 0.807 0.103 0.846 0.119 0.365
7 0.821 0.113 0.877 0.145 0.400
8 0.795 0.097 0.874 0.128 0.348
9 0.804 0.087 0.832 0.119 0.367

10 0.816 0.097 0.844 0.127 0.388
Mean 0.810 0.095 0.850 0.126 0.376
SD 0.012 0.010 0.014 0.008 0.023

Set A 0.788 0.083 0.808 0.121 0.372
Set B 0.828 0.089 0.892 0.132 0.378
Set C 0.780 0.043 0.730 0.041 -0.218
Full 0.296

Finally, it can be seen that a RF classifier is an appropri-
ate approach for the prediction of a septic condition from
clinical data. However, due to incomplete, imbalanced
data and the often nonspecific and subtle symptoms in the
disease progression, it is very hard to achieve a robust and
satisfying result for an early prediction.

4. Conclusion and Outlook
In this paper an approach for early prediction of sepsis

using RF classification was presented. In general, it has
been observed that the algorithm is capable of predicting a
septic condition. However, due to the low specificity and
large variety of septic symptoms, it is very hard to find the
most significant features for a robust prediction.

Several measures to improve the classification result can
be taken. During data augmentation, no interpolation al-
gorithm was used to fill the missing values in the data, so
the decision trees are trained with incomplete information.
In a former version of the algorithm, a forward insertion
was performed where missing values were set using the
previous data row, but no considerable improvement was
observed, so the interpolation was neglected. Nonetheless,
there are more sophisticated approaches to predict missing
data points which could improve the result.

In the future, the RF approach could be enhanced by us-
ing a more complex selection of combined features, e.g.
the ratios of pulse rate, respiration, blood pressure, etc..
Feature combinations have the potential to gain supple-
mentary information from the interdependencies of the
clinical data. Additionally, a more detailed analysis of fea-
ture importance could be performed. By setting a focus
on the parameters described in MEWS, camera-based un-

obtrusive measurement techniques as introduced in [9] are
sufficient for a patient-friendly surveillance system. Fi-
nally, a contact-free vital sign monitoring could decrease
disease onsets which are caused by the sensors itself (noso-
comial infections).
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