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Abstract

Early prediction of sepsis is of utmost importance to pro-
vide optimal care at an early stage. This work aims to use
machine learning for early prediction of sepsis using ra-
tio and power-based feature transformation. The feature
transformation and feature selection process is optimized
by applying a genetic algorithm (GA) based approach to
extract the information specific to the sepsis from the given
raw patient covariates that maximizes the underlying clas-
sification performance in terms of utility score. The pro-
posed method begins with filling the missing values in the
training dataset. Then, GA is applied strategically to iden-
tify influential ratio and power-based features from the raw
patient covariates. The utility score is maximized as an
objective of the optimization. RusBoost is used with de-
fault settings for underlying classification during optimiza-
tion. Subsequently, an optimal RusBoost model is devel-
oped with a set of 55 identified features. Independent per-
formance evaluation of the proposed method with the 2019
PhysioNet/CinC Challenge dataset has officially achieved
19th rank with a utility score of 30.9% on the full hidden
test data. This work appears as Shivpatidar on the leader-
board. The proposed early warning system has potential
clinical value in critical care clinics.

1. Introduction

Sepsis is a potentially fatal condition that occurs when
the host response to infections lead to tissue damage, organ
failure, or even death [1]. Anyone suffering from an infec-
tion can develop sepsis, however elderly people, pregnant
women, neonates, hospitalized patients, and people with
HIV/AIDS, liver cirrhosis, cancer, kidney disease, autoim-
mune diseases and no spleen, are more prone to get sepsis.
[2].

Monitoring the physiological status of a patient who can
develop sepsis in future is of utmost importance in critical
care clinics [3]. Nevertheless, such monitoring can assist
in early diagnosis and then immediate treatments of sepsis
in turn ensuring higher rates of survival and lower health-
care costs. Each hour of delay in the treatment for septic
patients causes a 4-8% increase in mortality [4, 5].

Globally, around 30 million people get sepsis and as a

result of which 6 million people lose their lives every year.
Paediatric sepsis cases amounting to 4.2 million newborns
and children poses one of the greatest challenges to paedi-
atric critical care medicine.

In the U.S. itself, around 1.7 million people develop
sepsis and nearly 270,000 patients die from it each year.
Moreover, more than 33% of the people who die in the
U.S. hospitals have sepsis. The economic burden of sep-
sis is surpassing any other illness with $24 billion which is
13% of U.S. healthcare expenses per year. It is noteworthy
that a large part of this burden is due to the sepsis patients
that were not diagnosed even after hospitalization [6]. The
global economic burden of sepsis is even higher with the
developing world at most risk. In a nutshell, severe sepsis
and septic shock can cause significant morbidity, mortal-
ity, and healthcare expenses and therefore the need for the
hour is to detect it as early as possible. Early prediction
and immediate antibiotic treatment for sepsis are crucial
needs for improving the conditions of sepsis patients.

Despite the intensive research for the management of
severe sepsis and septic shock, there is a lack of screen-
ing tool capable of continuously monitoring its develop-
ment [7]. Against this backdrop, this study proposes ra-
tio and power-based feature transformation and RusBoost
based classification. By applying a genetic algorithm (GA)
based optimization, clinically significant features are opti-
mally selected after said transformation of the given raw
patient’s covariates. Specifically, from the cross-validation
data, a set of ratio and power-based features are tried and
tested during GA based optimization to maximize the un-
derlying classification performance. Such features are then
used to design an optimal RusBoost classifier architecture
for clinical decision making.

2. Methodology

As shown in Figure 1, the proposed methodology for
early diagnosis of sepsis involves the following main sub-
sections:

2.1. Pre-processing

In clinical settings, some tests cannot be carried out be-
cause either the hospital lacks the necessary medical de-
vice, or some medical tests may not be appropriate for cer-
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Figure 1. The proposed system.

tain subjects. As a result, the collected patient data may
contain a large number of missing values. Missing or un-
known values in the data can degrade the performance of
pattern recognition techniques and therefore need to be
dealt with when solving real-life classification problems.
There are many ways to deal with missing values such as
(a) case deletion, (b) imputation, (c) use of model-based
procedures like expectation-maximization algorithm, (d)
use of machine learning procedures, where missing val-
ues are incorporated into the classifier [8]. In this work, in
order to replace the missing observations, linear interpo-
lation of neighbouring two non-missing values is used to
fill all the not a number of values for improving the overall
performance of the algorithm.

2.2. Ratio and Power-based features

In literature, ratio-based features have found to improve
the capabilities of anomaly detection systems [9]. In view
of this, we have explored all possible ratio-based features
up to order of three as given by the set:

R =
{

xk

ymzn
: x, y, z ∈ P;−9 ≤ k,m, n ≤ 9

}
,

where, P is the vector containing 38 of the 40 given pa-
tient signs ignoring the two values of administrative iden-
tifier for ICU units. It is worth to note that the exploration
space is not limited to the above-given space in general.

2.3. RusBoost based Classification

Ensemble classification [10, 11] strategically creates a
set of weak classifiers and group them to get enhanced
overall performance for machine learning applications.
RusBoost is one of the popular methods to handle the class
imbalance problem. It belongs to the class of boosting-
based ensemble classifiers that deploys techniques for data
preprocessing into boosting algorithms. In order to alle-
viate the class imbalance in data, RUSBoost removes in-
stances of the majority class by random undersampling in

each iteration. The undersampling technique makes Rus-
Boost quite faster in terms of model building time as it
uses fewer instances to construct each classifier in the en-
semble. In fact, for every iteration during training, the
method changes and bias the weight distribution toward
the minority class for the next classifier or weak learner.
After a model is trained, the weights of the original data-
set instances are updated for the next sampling phase. The
process of modifying the weight distribution repeats up to
the number of weak learners considered ensuring more di-
versity in the training data which ultimately benefits the
ensemble learning. The predictions of the individual weak
learners are then merged using the majority vote to obtain
the final decision.

2.4. GA based optimization

In 1962, Holland pioneered the development of GA as a
stochastic optimization algorithm. The underlying prin-
ciples of GA are an imitation of the process of natural
selection and the evolution of genetic materials in living
beings. In the following section, GA based feature trans-
formation and selection approach are detailed to estimate
the influential clinical features for detecting sepsis by con-
strained maximization of the normalized utility function as
discussed earlier in Section 2.4. In order to maximize nor-
malized utility function using GA, the search space for the
model parameters needs to be specified properly before-
hand. This step, in turn, can facilitate the faster conver-
gence of the GA with an appropriate choice of the search
space. Normally, the search space can be determined by
analyzing the characteristics of the parameters. In this
work, the entire feature search space is empirically chosen
and it can be simply described as follows:

θ :
{
θ : θL ≤ θ ≤ θU

}
,

where, L and U denotes the related lower and upper ranges.
Now, with GA the global or near-global estimate of the ra-
tio and power-based features θ∗ can be derived as follows:

θ∗ = arg max
θ∈R
{Un}

where, Un is the normalized utility score which measures
the performance of the algorithm for its binary classifica-
tion as given by the challenge organizers [7].

3. Results and discussion

In this study, we sought to design a screening tool for
sepsis using machine learning methods and 2019 Phys-
ioNet/CinC Challenge dataset [7]. The dataset used is
comprised of three distinct US hospitals, arbitrary named
A, B, and C. Part of dataset A and B forms the training



set, and C is completely kept hidden for testing purposes
during the challenge.

The training set contains 1,552,210 records of 40,336
patients comprising vital signs, laboratory values, and de-
mographics. Each observation has 40 attributes. The train-
ing set has two groups of records. Group A has 790,215
records of 20,336 patients. Group B has 761,995 records of
20,000 patients. The combined data has 1,552,210 records
for 40,336 patients. Group A covers 1790 patients with
2.17% sepsis records amounting to 8.8% sepsis patients.
The group B has 10,780 records of 1142 patients with
1.41% sepsis records amounting to 5.71% sepsis patients.
The combined data has 27,916 records of 2932 patients
with 1.80% sepsis records amounting to 7.27% sepsis pa-
tients.

Using GA in Matlab, an optimal sepsis detection frame-
work is designed for classifying the records into non-sepsis
and sepsis classes. As the given data has a high density
(approximately 20%) of missing values, therefore the al-
gorithm begins with linear interpolation of neighbouring
two non-missing values to fill all the not a number val-
ues. 90% of the training set is used for cross-validation
and remaining is used for testing purposes. In order to find
the diagnostically useful features, GA based optimization
with feature transformation and feature selection process
from the given patient signs is applied to characterize sep-
sis. Optimization is done with an objective to maximize
the underlying classification performance in terms of util-
ity score. It is to be noted that only indices of the possible
combinations of the ratio based features are passed to the
objective function. And actual computation of GA based
selected ratios and their selection is decided within the ob-
jective function. A supervised ensemble machine learning
model called RusBoost is used with default settings for
the underlying classification of the sepsis and non-sepsis
records. Nevertheless, a 3-fold cross-validation scheme is
implemented to get robust performance while doing opti-
mization. Due to involved computational complexity, only
the carefully chosen set of ratios as described earlier in
Section 2.2 were explored. As a result, after GA based op-
timization, 17 most influential ratio and power-based clin-
ical features are identified as mentioned in Table 1. How-
ever, it is to be noted that the optimal feature set may vary
depending upon the GA settings. The obtained features
are subsequently clubbed with given 38 signs to form the
final feature set consisting of 55 values for classifying non-
sepsis and sepsis records. An optimal ensemble system of
RusBoost is designed as a classifier model for the early
prediction of sepsis on test data. Table 2 shows the per-
formance statistics of the proposed method in the context
of clinical decision making at specified time thresholds in
hours. This utility function is used in its original form as
given by the challenge organizers for tabulating the statis-

tics in Table 2. It rewards the parameter 1.0 to the clas-
sifiers for early predictions of sepsis if it predicts sepsis
between intervals ranging from 12 hours before to 3 hours
after the actual onset of sepsis (tsepsis). The classifier is
penalized if it does not predict sepsis or predict sepsis more
than 12 hours before tsepsis . The maximum penalties for
very early detection and late detection are parameter 0.05
and -2.0 respectively. The classifier that predicts sepsis for
non-sepsis cases is penalized with a parameter 0.05 which
is the same as the very early detection penalty. The clas-
sifier is neither rewarded nor penalized if it does not pre-
dict sepsis. Moreover, the performance particular to sepsis
cases is tabulated in Table 3.

The algorithm is finally evaluated officially with the
2019 PhysioNet/CinC Challenge dataset and obtained the
utility score of 30.9% for the full hidden test data. Table
4 depicts the detailed performance of this work on hidden
test sets. The reported execution time on hidden test set A
in h:m:s is 15:57:22. This work appears in the ranking ta-
ble as Shivpatidar and it has been ranked 19th . The results
obtained on a hidden set were consistent at least hospital-
wise with that of the training. The proposed early warning
system has potential clinical value in critical care clinics.
The proposed method is very fast and in a real monitoring
setting, this can increase the efficacy of the treatment of
sepsis. This work reveals that the ratio and power-based
features derived using patients signs are quite promising
for better characterization of patient records to detect sep-
sis. The proposed method is robust to missing data even at
a very lower density of 20% of the data. In order to ana-
lyze the effect of training data size on the performance of
the proposed system, the model is trained and tested with
varying training data and a fixed subset of test data respec-
tively. And the resultant performance has been observed
to be incremental with size of training data as depicted in
Figure 2. It is noteworthy that the prognostic ability of
the proposed method can be enhanced further by introduc-
ing more training instances while developing the involved
model.

4. Conclusion

In this work, we have explored the strength of ratio and
power-based features with RusBoost based classification
for automated diagnosis of sepsis. The feature transforma-
tion and selection process are optimized to extract the in-
formation specific to the sepsis that maximizes the under-
lying classification performance in terms of utility score.
The proposed framework for sepsis has shown significant
performance on a large and diverse dataset. Further, the
low-complexity execution makes it a suitable candidate for
the detection and early prediction of sepsis in real-time
clinical environments. The performance of the proposed
method can be enhanced further by adding more train-



Table 1. List of identified influential features
S. No. Component of Features Type

1 End tidal CO2/Partial thromboplastin time (s) x/y2

2 Diastolic BP/Gender x4/y
3 Diastolic BP/Gender x/y
4 Heart Rate/ Age x/y
5 Age/ Gender x/y
6 Heart Rate/(Systolic BP*Age) x/yz
7 Heart rate (beats per minute) x5

8 Temperature (deg C) x4

9 Mean arterial pressure (mm Hg) 1/y2

10 Diastolic BP (mm Hg) x2

11 End tidal CO2 (mm Hg) x4

12 FiO2:Fraction of inspired oxygen (%) x8

13 Alkalinephos (IU/L) x6

14 Creatinine (mg/dL) 1/y3

15 Fibrinogen (mg/dL) x4

16 Age x7

17 ICULOS:ICU length of stay 1/y

Table 2. Performance statistics at specified time thresholds
using the training data.

Threshold AUROC AUPRC F1-Score Accuracy Utility
Hours Score

6 85.22 13.32 13.38 87.92 40.00
12 84.00 16.87 18.04 87.73 35.10
18 81.31 11.23 16.21 87.73 30.10
24 80.01 10.12 14.79 87.56 28.51

Table 3. Performance statistics of sepsis cases using the
training data.

Threshold AUROC AUPRC F1-Score Accuracy Utility
Hours Score

6 56.13 22.31 28.15 45.01 60.10

Table 4. Performance statistics on the hidden test data.
Test Sets Utility Score F1-Score Accuracy

A 39.0 13.2 82.9
B 38.6 13.2 89.0
C -21.2 4.1 73.2

Overall 30.9 NA NA
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Figure 2. Effect of training data size on performance while
training.

ing instances during model preparation. Exploration of
the feature space beyond the considered limits including
the derivative terms can be done to improve the predictive
power of the said model for sepsis.
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