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Abstract 

This study presents a machine learning (ML) model that 
predicts onset of sepsis earlier in time than what is 
possible using common severity scoring systems. Our 
study’s focus is on building solutions that maximizes 
sepsis prediction, is real-world implementable and usable 
by care providers particularly in developing countries 
like India. We have selected features based on the 
observation that patient vitals are available on an hourly 
basis, whereas lab results if available are less frequent. 
To capture the time series nature of the data, we trained 
the model using long short term memory (LSTM), a 
version of recurrent neural network (RNN) architecture. 
To capture locale specific pathology baseline, we have 
engineered features using two methods. We define a 
minimum & maximum value for vitals and lab tests and 
normalize the incoming data against this min-max value. 
Secondly, to leverage sparsely available lab data that 
signal increased sepsis risk, we define a synthetic “risk” 
feature. This risk feature is assigned a higher score when 
certain lab values are available and exceed a threshold. 
Our solution achieved an official utility score of 0.179 on 
the full test under the team name LDBR. Finally, we 
present practical considerations we discovered from our 
interactions with local hospitals and health-care 
providers. 

1 Background 
Sepsis is a life-threatening condition that occurs when the 
body's response to infection causes tissue damage, organ 
failure, or death. Sepsis is caused by an inflammatory 
immune response triggered by an infection which could 
be bacterial, fungal, or viral. In the U.S., nearly 1.7 
million people develop sepsis and 270,000 people die 
from sepsis each year, many of the death being in 
hospitals. Internationally, an estimated 30 million people 
develop sepsis and 6 million people die from sepsis each 
year. (Reyna, 2019). An estimated 4.2 million newborns 
and children are affected by sepsis.  
 

Sepsis is an enigmatic condition with heterogeneity in the 
host’s response to the condition. Current techniques 
detect sepsis using scoring systems. However, these 
techniques do not leverage the inherent information 
available in-patient history, previous learnings and 
patterns inherent about sepsis manifestation. Currently, 
by the time sepsis is detected and the cause is identified, 
organ damage has already progressed to a potentially 
irreversible stage.  Given the high incidence levels of 
sepsis and potential long-term damage to organs and/or 
loss of life, early detection of sepsis is gaining 
considerable attention in the machine learning 
community  (Moor, 2019) (LSTM, n.d.).  It is possible 
that the state-of-the-art machine learning techniques 
trained on large and diverse datasets can extract subtle, 
but highly discriminating leading-indicators for the onset 
of sepsis. 
 
Machine learning is a subset of artificial intelligence, 
which builds sophisticated mathematical models of a 
phenomenon using multivariate measured data.  The 
model is typically used to make predictions and support 
decision-making. Recently neural networks, particularly 
deep neural networks, have shown significant capabilities 
to model complex phenomena. In particular, Recurrent 
Neural Network (RNN)  and LSTM within RNN  has 
proved very effective in applications such as natural 
language modelling, translating languages, speech 
recognition, handwriting recognition, time-series 
prediction and anomaly detection (LSTM, n.d.). 

2 Our Approach 
In this work, we have taken a pragmatic approach on how 
to add value to the sepsis prediction problem. Detecting 
sepsis in developing countries implies working in a not-
so-data-rich environment; both in terms of features and 
temporal sampling. The prediction model needs to be 
minimally complex, so that it is easily tune and adapted to 
local needs. We set out to find a solution which is 
incrementally better than the current situation in 
developing countries, rather than a 100% solution.  
 



Given this minimally-viable-algorithm thinking, our first 
approach was to use a random forest decision tree. 
Random forest provides the ability to understand the 
influence of each feature in the prediction and also gives 
the care provider the ability to understand and interpret 
the prediction better than a black box algorithm that 
provides a number. While this approach gave us good 
results with the initial small dataset, it did not have the 
discriminating power when applied to the sepsis 
challenge dataset.  
 
Next, we used a logistic-regression model using selected 
raw-features and synthetic compounded features.  While 
the training was quick, it exhibited good learning as 
shown by low overall cost in both the training and 
validation data, the area under the receiver-operating-
curve (ROC) stayed below 0.6.  
 
Furthermore, given that the input data is temporally-
sequential in nature and the final goal is to predict sepsis 
six hours ahead of the current best-practice, we choose to 
use a LSTM (Long Short-Term Memory) network, a type 
of recurrent neural network where the network has 
memory over extended time-periods and thus can learn 
temporal-signatures in addition to feature-signatures.  
 

 
Figure 1: Major Phases in a Machine Learning 
Application Development 

The process of training any machine learning algorithm 
can  be represented using the block diagram shown in 
Figure 1.   
 
The first block represents the act of capturing data about 
the patient, their symptoms and their health history.  It 
could include physiological samples such as temperature, 
pressure, heart-rate captured at regular intervals in a 
hospital setting. It could also include laboratory test 
results as an when they are made available. Work by 
Futoma et al. (Futoma, 2017) is an example of a rich 
sepsis data set. 
 
Typically, the raw data is captured across a multiplicity 
of instruments, laboratory reports, and patient 
questionnaires. Transcribing the data and consolidating 
them into a single source can be time consuming and 
error prone. Outlier detection and strategies for dealing 
with missing data are important at this stage.  Patient 
privacy, data security, data-hosting, data-transport and 
data-format are all important considerations in the process 
of making the system operational. 
 
Feature engineering is the art and science of 
determining which part of the data to use and how to use 

it efficiently. Typically, this step also involves annotating 
the data with labels which are needed for supervised 
learning applications. Collating data, conditioning it and 
selecting features for training are often the most time-
consuming aspects of machine learning. Currently, there 
are companies dedicated to annotate large datasets 
including medical images, video, audio, hospital, 
clinic and laboratory data-sets.   
 
The processing-architecture involves determining the 
right algorithm class that should be used given the 
problem statement. This decision should consider data-
characteristics, available computational capacity and the 
application’s real-time/non-real-time requirements. Lately 
other considerations  have emerged - such as  the 
requirement to cast the model’s decision rational and 
explainable to a human. There are also emerging 
requirements for continual learning as external problem 
conditions change. 
 
The training phase involves using the feature-engineered 
datasets, the network architecture and developing a 
mathematical model of the phenomena. A  trained model 
is typically used to predict a future state for temporal data 
(example: tomorrow’s weather) or classifying an object 
input to the model (example: cat picture).  
 
The operational phase is about how the trained model is 
packaged, computationally executed and used for 
decision-making. Our current focus of this phase is  
on generalization. Going forward it will involve 
everything from end-use platform capabilities, explain-
ability, decision-liability, customization, and regulatory 
compliance. 

3 Data Source & Feature Engineering 
Data used for this study is provided as part of the 
PhysioNet challenge[ (Reyna, 2019)]. This data, made 
available to challenge participants, is from ICU patients 
from two separate hospitals. Each patient has a csv file 
where the column headers list the Vitals, Laboratory tests 
and Demographic values, while  each row consists of 
hourly values  for these parameters when available. A 
total of 40,366 patient files are available as part of this 
challenge.  
3.1 Feature Description 
We have   noted that the hourly-sampled feature data 
varies widely across patients.  
 
3.2 Sequential features 
Given the clinical importance of vitals and that vital  
samples are available over 90% of the inputs, we use vital 
values of HR, O2Sat, SBP, DBP, MAP, Temp, Resp as 
our primary features. We use min-max normalization for 
each of the features.  To capture locale specific pathology 
baseline, we have engineered features using two concepts 



which we refer to as a “local baseline” and a “synthetic 
risk feature”. We define a “local baseline” as minimum 
and maximum value for vitals and a threshold value for 
lab data. We normalize the incoming data against this 
baseline value. Clinically, certain lab test values such 
Lactate, pH and/or WBC are used to determine sepsis. 
However, these values are not routinely monitored and 
thus are missing for over 90% of the input. In order to 
deal with this situation, we defined a synthetic “risk” 
feature, where we check if the lab values for Lactate, pH 
and/or WBC are available for the selected time step (time 
step is a LSTM parameter). If the lab value is available 
and exceeds a threshold we set the risk feature as high. 
This technique helps include important signals that are 
available non-periodically from lab tests and other 
clinical events. 
Table 1 lists the feature columns and their frequency 
distribution.  As noted in the table a majority of the labels 
are not sampled or updated on an hourly basis. 

 
Table 1: Features in the sepsis challenge database and their 
availability 

3.3 Non-sequential features 
The following demographic features are available for 
every patient: Age, Gender, Hospital Admission Time, 
and ICU length of stay. Sepsis Label is given for each 
row to indicate if the patient has been diagnosed with 
Sepsis  at that time instant. We use Gender, Age & ICU 
length of stay as features after binning.  

4 Architecture and Training  
The sepsis challenge is to detect sepsis six hours ahead of 
when it is currently detected in hospitals. The onset of 
sepsis can lead to irreversible damage to human organs 

and hence it should be detected and addressed as soon as 
it sets in. Clinically, care givers look for vitals and lab 
trends over time to detect the onset of sepsis. In order to 
learn temporal trends in a ML model, we choose Long 
Short Term Memory (LSTM), that uses feedback and 
memory-units to glean information from time sequences 
data. Figure 2 is a representation of the data as fed to the 
LSTM network.  At each timestep tn , t(n+1), t(n+2)  and so 
on a set of features is input in to the LSTM and a 
sepsis/non-sepsis classification is expected as output. 
 

 
Figure 2: Temporal nature of data fed into the LSTM 

Our implementation used Tensorflow v1.14 (tf.keras) and 
schematically shown in Figure 3. The first layer in our 
LSTM had 64 units; this was followed by a dropout layer, 
then a dense layer with 64 nodes and “relu” activation and 
finally a single node dense layer with sigmoid activation. 
The LSTM layer has a kernel and bias regularization of 
0.2 and activity regularization of 0.1. The optimizer is 
“Adam” and loss function is “mse”.  Adam optimizer is 
based on adaptive moment estimation and “MSE” is 
mean squared error.  

Figure 3 LSTM architecture for Sepsis detection 

The training and testing data were split 75:25 and number 
of epochs set to 50. Given the unbalanced nature of the 
target, we used class weights for not-sepsis set to 0.01 
and for sepsis set to 1000. We used early stopping and 
started with a learning rate of 0.0001 for up to ten epochs 
and increased the learning rate after ten epochs.  

5 Results 
Figure 4 graphs Receiver Operating Characteristic (ROC) 
curve, which shows the performance of the model. The 
output layer in our model is a layer with sigmoid 
activation that returns the probability of sepsis In order to 
classify the output as Sepsis or Not-Sepsis we need to 
choose an operating threshold. Figure 5 plots the 
precision and recall curve for various threshold values 

Data availability Column(Feature) labels  

Columns values 
available 100% 

Age, Gender, ICULOS, 
HospitalAdminTime, SepsisLabel 

Column values available 
more then 80% 

HR, O2Sat, SBP, MAP, Resp 

Columns values 
available 50% to 70% 

DBP, Temp 

Columns values 
available 10% to 20% 

Glucose 

Column values available 
less than 10%  

EtCo2, BaseExcess, HCO3, FiO2, 
pH, PaCO2, SaO2, AST, BUN, 
ALkalinephos, Calcium, 
Chloride, Creatinine, Bilirubin, 
Lactate, Magnesium, Phosphate, 
Potassium, Bilirubin, Troponin, 
Hct, Hgb, PT, WBC, Fibrinogen, 
Platelets 



that could be used.  Given that an untreated case of sepsis 
could lead to organ-failure or death, we argue for 
maximizing True Positives at the expense of False 
Positives. In other words, we prioritized increasing Recall 
ever it meant lower Precision.  

 
Figure 4: ROC of the sepsis prediction model with our 
operating point shown on the curve  

 
Figure 5: Precision and Recall as a function of the threshold at 
the output node 

We chose the threshold value of 0.028 to maximize the 
number of True Positives (patients with Sepsis). At this 
threshold our recall value is 0.4 and the precision value is 
0.08 as shown in Figure 5. The algorithm is graded for its 
binary classification performance using the organizer’s 
utility function, which rewards(penalizes) classifiers for 
early (late) predictions of sepsis  (Reyna, 2019). Our 
solution utility score on the full test set is 0.179. The 
challenge winners utility score is 0.36. 

6 Deployment Considerations 
In hospital setting, the system has to be robust  and 
adaptable. In light of this, feature selection should 
acknowledge the cost and timeliness of acquiring specific 
features and the incremental information they add to the 
decision making process. It is important to have a well-
thought-out fill in strategy when data for that feature is 
not available. This study is a case of using offline training 
of the model and using the model for dynamic inferences 
for each patient for a given time step. The offline 
approach is powerful in its simplicity during the training 

process, however an operational model will require the 
capability and process to incrementally update the model 
to reflect incoming data over time.  

7 Conclusions and Future steps 
This study developed a machine learning LSTM based 
model to predict sepsis six hours ahead of the typical 
sepsis detection today. The sepsis challenge organizers 
use an official “utility score”  which rewards classifiers 
for early predictions of sepsis and penalizes them for 
late/missed predictions and for predictions of sepsis in 
non-sepsis patients. Our LSTM model scored a utility-
score of 0.199, while the leader at the time of submission 
was at 0.433. Given this we realize that our model can be 
improved and we intend to continue refining it by 
improved how we selected the features, handled missing 
and noisy features, by defining a more sophisticated risk-
factor synthetic feature and by training on more datasets. 
 
We had significant learning in our discussions with local 
health-care providers and hospitals which we share 
below.  The ML model’s prediction should be explainable 
to get adoption by care providers.  As a first step it would 
be helpful to provide weights of the used features for a 
given score. The model will also need a way to 
incorporate locale/regional influences, e.g. baseline 
Glucose readings which can vary based on 
ethnicity/region. The risk scoring system needs to fed into 
an alerting system that is easy to use by care providers 
and explainable. As mentioned earlier, ongoing training 
of the model, continuous evaluation of the score, 
subsequent actions by the care providers must be 
incorporated in the model training. 
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