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Abstract 

Bacterial infection can result in sepsis; a toxic immune 

response by the body. Although the rate of mortality due to 

sepsis has fallen within the UK, overall rates remain 

higher than in Europe. Early detection of sepsis has been 

linked to elevated successful outcomes. This work focuses 

on the use of a Random Under Sample (RUS) Boosted Tree 

for classifying sepsis from intensive care unit databases. 

Full   training  set   (40,336 subjects)   achieved  

sensitivity  and specificity of 53.4% and 83.6% respectively 
(AUC:77.79%) with 5 fold cross-validation. In the 

unofficial phase of the challenge the model achieved a 

normalized utility score of 0.267. The model did not 

achieve a score on the full test set (team name B-Secur). 

The results show that the model is capable of detecting 

sepsis in patients. However, there is more work to be done 

in order to improve performance. Future work will 

investigate the use of fixed time windows rather   than   

individual   hourly   measurements   to   increase   

prediction performance. 

 

1. Introduction 

Sepsis is defined as “life threatening organ dysfunction 

caused by dysregulated host response to infection”.[1] It is 

estimated that approximately 5 million sepsis – related 

deaths occur annually around the world.[2] To reduce the 

global burden of sepsis, prevention and or early 

intervention are of importance. Mortality rates associated 
with Sepsis have been shown to increase with each hour of 

delayed treatment.[3] 

Early goal directed therapy (EGDT) and ‘Sepsis Six’ 

bundles are care packages that have been developed to  

reduce the risk of mortality following the onset of 

sepsis.[4] They include actions such as oxygen and 

intravenous antibiotics administration. These bundles 

favor early intervention as illustrated by their 

recommended time frames for completion. For example,  

the ‘Sepsis Six’ approach must be completed within one 

hour of sepsis onset. Compliance with bundled care 

packages has been  shown to reduce mortality by 24% 
when compared to standard practices.[5] 

Clinical diagnosis of sepsis is based on the presence of 
an infection and a raised Sequential Organ Failure 

Assessment Score (SOFA).[4] However the tests required 

to compute the SOFA score may not be continuously 

attainable due to resource / staffing limitations and or due 

to a patient being sufficiently unwell.   An opportunity 

exists to  improve upon early sepsis detection based upon 

the data available to clinicians through machine learning. 

Early detection will optimize the use of sepsis care bundles 

and subsequently reduce the incidences of mortality 

resulting from Sepsis. 

 

2. Method 

Vital sign measurements (e.g. heart rate, temperature, 

respiration etc.) were typically found to be continuously 

available within the training data. Conversely, laboratory 

results within the training data set were not found to be 

continuously available i.e. no hourly updates. 

Subsequently, the training data set contains a significant 
proportion of missing values. To alleviate the burden of 

missing data, our model utilizes a simple forward filling 

procedure, in which the current value, if missing, is 

replaced by the previous value; the current value remains 

unchanged if there is no previous entries. With respect to 

measures of blood pressure only (mean arterial pressure, 

MAP, systolic blood pressure , SBP,  and diastolic blood 

pressure, DBP), after forward filling, missing measures 

where estimated using Equation 1 if at least two of the 

three measures were present at a given time interval. 

 

𝑀𝐴𝑃 =
𝑆𝐵𝑃+2𝐷𝐵𝑃
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        (1) 

 

With respect to the model developed, variables of 

interest initially included all vital sign measurements, 

laboratory measurements and the ICU length of stay. Using 

all of the data from all of the patients within the training 

data set (after forward filling), present measures for each 
variable (e.g. heart rate from all subjects) were clustered 

into 7 discrete bins. Clustering was carried out using K-

means clustering. K-means clustering was chosen over 

equal bin sizes as it allows non-linear spread of values to 

be represented more robustly. Seven clusters were chosen 



as a tradeoff between subsequent classifier performance 

and interpretability of clusters (e.g. cluster 1 contains the 

lowest observed heart rates and cluster 7 contains the 

highest observed heart rates). An additional cluster (eight 

clusters in total) was utilised to categorise missing data. In 
the context of clinical care, missing values often provide 

additional information about a patients or doctors' intuition 

i.e. the frequency at which laboratory tests were carried out 

and can improve prediction performance.  

The training data set is unbalanced; there are many more 

non-septic than septic subjects. This can lead to bias when 

building machine learning models in favour of the biggest 

class; in this instance non-septic subjects. To prevent a 

model that is biased towards labelling people as non – 

septic,  Random Undersampling Boosting (RUSBoost) and 

a decision tree ensemble classifier were employed. 

RUSBoost is a boosting algorithm specifically designed to 
be effective in classifying unbalanced data. In this work, 

the RUSBoost algorithm takes the total number of septic 

members (nsepsis) within the training data as the basic unit 

for sampling. For each training iteration of the ensemble 

decision tree, the non-sepsis class is under sampled by 

randomly taking only nsepsis observations. Each decision 

tree or weak learner is therefore trained on data which 

contains the same number of observations for both classes, 

removing classification bias. Each subsequent weak 

learner is trained to try to correct the misclassifications of 

its predecessor, leading to increased overall classification 
accuracy. A decision tree ensemble with 200 learners was 

utilised.  

The model (Figure 1) was trained / assessed using 5-fold 

cross validation on the provided data. The model was set 

up for classification such that it was only dependant on 

current measures and not historical values. Typically, cross 

validation would be done once all the data had been 

concatenated into one global dataset. However, due to the 

use of forward filling, this represents a potential for 

subsequent test data sets to be contaminated with training 

data. To prevent this, all data files were initially sorted into 

two categories; septic and non-septic. Cross validation was 
then performed on the indexes of the septic and non-septic 

files independently. This insured that data from one patient 

could not be within a training and a test data set. Each of 

the corresponding folds for septic and non-septic patients 

were then combined. The data used in building / testing the 

model was supplied by the 2019 PhysioNet Challenge.[6] 

The optimum threshold for use with the model for sepsis 

detection was found via use of a receiver operating 

characteristic curve (ROC, area under the curve; AUC). 

Performance of the model was assessed via the PhysioNet 

utility score  and a confusion matrix (sensitivity, 
specificity). 

 

3. Results 

With respect to the ROC curve, the optimum sepsis  

 

Figure 1. Flow diagram representing the process of 

classification with new patient data. 

 

Figure 2. ROC  representing the optimum sepsis threshold 

across each of the test folds. 

 

Figure 3. Confusion matrix representing the mean 

classifications made by the Randomly Under Sampled 

Boosted Tree across all test folds 



threshold across all folds was found to provide an AUC  of 

77.8%, Figure 2. Overall, as illustrated in Figure 2, the 

performance of the model across test folds was found to be 

stable. The model was found to have an average sensitivity 

of 53.4% and an average specificity of 83.6% across test 
folds, Figure 3. The mean utility score during cross 

validation was 0.267. 

 

4. Conclusion 

The results show that the model is capable of detecting 

sepsis in patients. However, there is substantial room for 

improvement. One of the key challenges with this data was 
the lack of additional information supplied about 

additional care that the patients were undergoing. For 

example, are measures of respiration rate natural or those 

of a ventilator machine. The care / different treatments 

which patients are  undergoing may adversely impact the 

ability to detect sepsis without the ability to use them as 

controlled variables. Future work will investigate the use 

of fixed time windows rather   than   individual   hourly   

measurements   to   increase   prediction performance. 
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