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Abstract

In this work, we describe our early sepsis prediction
model for the PhysioNet/Computing in Cardiology Chal-
lenge 2019. We prove that maximizing a general family
of utility functions (of which the challenge utility function
is a special case) is equivalent to minimizing a weighted
0-1 loss. We then utilize this fact to train an ensemble of
gradient boosting decision trees using a weighted binary
cross-entropy loss.

Our model takes the time-series nature of the data into
account by using a fixed size window of all measurements
within the last 20 hours as a feature vector. Data were
imputed in a way that gives the same information to the
model as present to healthcare professionals in real-time.
We tune the model hyper-parameters using 5-fold cross-
validation. The model performance was measured on each
evaluation set using the threshold that gives the maximum
utility on the training set. Our best model achieves an of-
ficial normalized utility score of 0.332 on the final full test
set of the challenge (Team name: SBU, rank: 6th/78).

1. Introduction

Sepsis is a critical medical condition caused by the
body’s response to infection [1, 2]. Some studies estimate
that nearly half of hospital mortalities occur among pa-
tients with sepsis, making it one of the leading causes of
deaths in hospitals [3].

Sepsis accounts for more than $20 billion of total US
hospital costs [4]. Moreover, the incidence rate of sepsis
is increasing [5]. Early prediction of sepsis can help in
lowering these costs in addition to aiding early intervention
and improving healthcare outcomes in hospitals [6, 7].

The PhysioNet/Computing in Cardiology Challenge
2019 is organized for early prediction of sepsis using auto-
mated approaches [8]. In this paper, we present our work
for this challenge based on our best submission using gra-
dient boosting decision trees.

2. Methods

2.1. Terminology

Denote by X = {xi}1≤i≤n a set of datapoints and by
y ∈ {−1,+1}n the set containing their labels. We asso-
ciate with each xi a vector ci containing context informa-
tion that might not be available at testing time. In the set-
ting of sepsis prediction, we define ci = (ti, oi) where ti is
the time until the sepsis event (if it exits) and oi is the out-
come type (developed sepsis or not) for the ith datapoint
corresponding to a certain patient.

We denote by Uxi,ci(ŷ) the utility of predicting ŷ ∈
{−1,+1} for a given datapoint xi with its context vector
ci. This terminology is a short hand notation to summarize
the utility function in [8] whose output depends on time,
prediction class and whether the patient eventually devel-
oped sepsis or not.

2.2. Imputation

In our work, we follow an imputation scheme that mim-
ics the information present to healthcare professionals in
real-time. At t = 0 all missing features are replaced with
the training set mean. At t > 0, for every feature, if the
feature is missing at the current time, we replace the fea-
ture with the last available value. We also append for every
feature the number of hours it has been missing as a new
feature.

Another advantage of this imputation scheme is that it is
convenient for the learning process of decision tree mod-
els. It allows them to learn the relationship between the
relevance of certain features (or a combination of them)
based on how long each of them has been missing.

2.3. Sample weighting

The utility function given in the challenge varies with
time, patient condition and prediction output. Using a reg-
ular binary labeling of the data-points without an appropri-
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ate weighting is not ideal since data-points within the same
class impact the total utility with different magnitudes.

More precisely, one can see that incorrectly predicting
a single point results in decreasing the total utility by the
difference between its correct prediction utility and its in-
correct prediction utility. Using this observation, we arrive
at Theorem 1 below which is true for the general case and
not only in the context of the challenge utility function.

Theorem 1. Maximizing the classification utility of a
dataset X according to a utility function Uxi,ci(ŷ) is
equivalent to minimizing a weighted 0-1 loss.

argmax
h∈H

|X|∑
i=1

Uxi,ci(ŷi) = argmin
h∈H

|X|∑
i=1

[ŷi 6= sign(γi)]× |γi|

where γi = Uxi,ci(+1)− Uxi,ci(−1).

Proof. Given a hypothesis spaceH , let ŷi be the predicted
class according to classifier h ∈ H . Moreover, in what
follows we denote by ŷ

′

i the opposite class of ŷi . Given
this, we can see that:

argmax
h∈H

|X|∑
i=1

Uxi,ci(ŷi) = argmin
h∈H

|X|∑
i=1

Uxi,ci(ŷ
′

i)

= argmax
h∈H

−
|X|∑
i=1

Uxi,ci(ŷ
′

i)

= argmax
h∈H

|X|∑
i=1

Uxi,ci(ŷi)−
|X|∑
i=1

Uxi,ci(ŷ
′

i)

= argmax
h∈H

|X|∑
i=1

(−1)[ŷi 6=sign(γi)]|γi|

= argmin
h∈H

|X|∑
i=1

((
1− (−1)[ŷi 6=sign(γi)]

)
|γi|
)

= argmin
h∈H

|X|∑
i=1

[ŷi 6= sign(γi)]× |γi|.

�

Corollary 1. Maximizing the challenge utility function is
equivalent to minimizing a weighted 0-1 loss such that:

X = {xi}1≤i≤n
C = {ci = (ti, oi)}1≤i≤n
y = {yi = sign

(
γi
)
}1≤i≤n

w = {wi = |γi|}1≤i≤n
γi = Uxi,ci(+1)− Uxi,ci(−1).

Given this, we use a weighted binary cross-entropy loss
to train our model as it is commonly used in classification
tasks to approximate the 0-1 loss:

L(y, y∗) =
1

2n

n∑
i=1

−wi
(
(1 + yi) log(y

∗
i ) + (1− yi) log(1− y∗i ))

)
where y∗i = P (y = 1|x).

2.4. Model

To build an early sepsis prediction model, we trained
an ensemble of gradient boosting decision trees (GDBT)
[9]. The model was trained and evaluated on the combined
dataset from both hospitals A and B containing 40336 pa-
tients out of which 2932 had a positive sepsis label. The
model was implemented using the lightGBM library (ver-
sion 2.2.3) [10]. The max tree depth was fixed at d = 7
and the number of learners was fixed at 100. We then tuned
the regularization strength parameters for L1 and L2 reg-
ularization in the ranges (0, 50) and (0, 500) respectively.
The optimal values were selected based on 5-fold cross-
validation.

To accommodate for the sequential nature of the data,
for each patient at time t, we augment the datapoints of
the last 20 hours into one vector. If t < 20, we augment
zero vectors. Ideally taking the 60 last hours would have
been a better choice as the majority of stays (more than
97%) are below 60 hours. However, due to computational
limitations, we fixed the number at 20 hours.

The label and weight for each data point were selected
according to Corollary 1. The model was trained to mini-
mize the weighted binary cross-entropy discussed earlier.

2.5. Score calibration

After fixing the model parameters, and for each fold, a
linear time algorithm is used to try all possible thresholds
on the training set. The best threshold resulting in maxi-
mum utility on the training set is used to evaluate the utility
on the evaluation set. The model resulting in the best util-
ity score on the evaluation set across the 5 folds is then
submitted for the final testing.

3. Results

Table 1 summarizes our official final challenge results.
We used 4 out of our 10 allowed submissions. Our best
model achieves a utility score of 0.332 on the full test set.
Our final team ranking was 6th.

Team Name SBU
Final test set normalized utility score 0.332

Rank 6th/78

Table 1: Official final challenge results

In what follows, we analyze our model output scores and
how the given utility function impacts the overall model
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performance. More generally, we are interested in how op-
timizing for the challenge utility function can impact real-
time prediction and decision making. Under this setting,
the time of prediction for positive patients is the first time
their scores go above a fixed threshold. Negative patients
are considered false positives if at any point in time their
scores go above the same fixed threshold. The results be-
low reflect the model performance on the evaluation set
using one of the 5 folds (80% training and 20% evaluation
on the combined set of hospital A and hospital B patients).

Figure 1: Average model output probability scores for sepsis and non-
sepsis patients. For sepsis patients, the time on the x-axis is relative to the
sepsis event time. For non-sepsis patients, the time is calculated relative
to the time of their last recorded measurement in the dataset. We note
that there is a general trend of increase in the average scores for sepsis
patients between tsepsis - 5 and tsepsis. This is in alignment with the in-
creasing weight of points in that interval according to the utility function.

As shown in Figure 1, there is a general trend of increase
in the average score for positive patients as we approach
the sepsis event. We also see that the optimal utility thresh-
old separates the average scores of positive and negative
patients. However, even with such a wide gap between the
average scores, we still observe a high false positive rate
at the point of maximum utility (Figure 2). This is mainly
because of the high variance of the score distribution of
positive patients as shown in Figure 3.

In Figure 4, we can see that the median detection time
among all patients in the evaluation set is always above 25
hours. This is considered a very early prediction for sep-
sis (penalized by the challenge utility function). The rea-
son the detection time is not going lower can be illustrated
in Figure 5. Out of 407 patients who had sepsis and had
records 15 hours before the sepsis event, 283 have higher
scores 15 hours before the sepsis event than at the sepsis
event. Because of this, no matter what threshold we set,
for most of sepsis patients, an alarm would be raised much
before the onset of sepsis.

From an optimization perspective, this is an artifact of
the utility function described in [8]. The weight of the
point at the sepsis event is 33.33 times that of any point
12 hours before it. The model might choose a slight in-

Figure 2: ROC curve and normalized utility as a function of false posi-
tive rate plot. At the point of maximum utility, the model has a high false
positive rate of 0.451. ROC curve was computed at patient level.

Figure 3: Comparison between the model output probability scores for
sepsis and non-sepsis patients. The green histogram shows the model
output probability for 605 sepsis patients at the sepsis event time. For
non-sepsis patients, we first selected 605 of them randomly and then cho-
sen one random point from each patient.

crease in the score of a sepsis event point at the expense of
a substantial increase in the probability scores of multiple
points much before the event. A similar behavior can be
seen for points ∈ (tsepsis - 6, tsepsis + 3) (which have high
weights). The collective effect of this results in having a
high number of early points with high probability scores,
causing positive patients to raise alarms very early on.

4. Conclusion

The results in this paper show that gradient boosting re-
gression trees perform relatively well for early prediction
of sepsis. In this dataset, data-points were bucketed into
hours. On a different dataset with real-time signals mea-
sured with high frequency such as heart rate, bucketing
would cause significant loss of information. This would
make it challenging to design fixed-size feature vectors
that incorporate short and long term information. In such a
scenario, sequence models such as LSTMs are more suit-
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Figure 4: Median detection time as a function of false positive rate.
The plot shows at each false positive rate, the median detection time for
positive patients who were correctly predicted by the model. Note that
the detection time is always above 25 hours. At the point of maximum
utility (0.451 FPR), the median detection time was 27 hours. For low
FPR values, the number of correctly predicted patients is small, which
explains the higher variance in that region.

Figure 5: Distribution of the difference between the model output prob-
ability scores at the sepsis event and 15 hours before the event for 407
patients. There are 283 patients who had higher scores 15 hours before
the sepsis event than at the sepsis event. A similar behavior can be no-
ticed at multiple different time points too. This results in a very early
prediction that doesn’t change much as we increase the decision thresh-
old explaining the shape of the graph in Figure 4.

able. They learn to capture those patterns at training time
given the full original time series data.

Motivated by the impacts of the utility function on the
model output scores shown in the results section, we would
like to explore more metrics, scoring functions and models
for early prediction tasks in future work. Particularly, we
are interested in developing methods that better optimize
for the real-time prediction setting discussed in this paper.
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