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Abstract

Sepsis is a life-threatening response to infection that can
lead to tissue damage, organ failure and death. The early
prediction of sepsis is important, as it reduces undesirable
patient outcomes associated with late-stage septic shock.
However, effective early prediction is challenging, because
the data is often heavily imbalanced against positive sepsis
diagnosis. If the class imbalance is not addressed, models
trained will tend to overfit in favour of the majority class,
leading to degraded performance on the minority class.
In this paper, we suggest a two-step method which con-
sists of a mutual information based downsampling algo-
rithm and a Synthetic Minority Over-sampling Technique
(SMOTE), in order to effectively perform early prediction
of sepsis. Our team, Kent Ridge Al (ranked 77th), obtained
a utility score of -0.164 on the full test set by using the
proposed two-step method. Additionally, we report cross-
validation results and identify several methods to improve
performance.

1. Introduction

Sepsis is a life-threatening disease, claiming over 75
thousand lives every year in the United States [1], and is
a leading cause of mortality amongst intensive-care unit
(ICU) patients [2]. Early identification of sepsis amongst
ICU patients is thus essential to prevent organ failure and
death. However, effective early prediction of sepsis has
proven to be difficult as sepsis biomarkers are not defini-
tive, and often, patients at risk of sepsis have various dis-
ease complications [3]. As few patients are diagnosed with
sepsis, a dataset of sepsis patients is often imbalanced.
Within the PhysioNet Challenge 2019 dataset [4], only
7.98% of patients develop sepsis at one point or another. A
classifier trained on an imbalanced dataset will be biased
in favour of the majority class, causing misclassification of
minority class samples [5].

In this paper, we propose a two-step method to address
the imbalance in data, consisting of a mutual information-
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based downsampling algorithm to reduce the majority
class, and the Synthetic Minority Over-sampling Tech-
nique (SMOTE) to increase the minority class. Using this
two-step method along with a long short-term memory
(LSTM) based neural network, our team, Kent Ridge Al
(ranked 77th), obtained a utility score of -0.164 on the full
test set. Additionally, we report cross-validation results
and identify several methods to improve performance, such
as including trend information.

2. Downsampling and Upsampling

Downsampling and upsampling are two common strate-
gies employed to deal with imbalanced dataset. When
data from the majority class is downsampled, a relatively
smaller number of representative instances are selected.
Downsampling is beneficial as it mitigates the overfitting
effects, but excessive downsampling will cause a loss in
useful information, and degrade the performance of the
classifier [6]. Upsampling refers to the generation of syn-
thetic samples from the minority class, to boost the number
of samples so that the number of samples in minority class
(after generation) is equal to the sample size of majority
class. However, generating synthetic samples is difficult,
and may cause overfitting as well if the generated sam-
ples are too similar to the original ones [7]. Ideally, both
downsampling and upsampling methods should be used in
tandem. In this section, we introduce a two-step method
that maintains the balance between downsampling and up-
sampling methods.

2.1. Mutual Information Based Downsam-
pling Algorithm

Mutual information (MI), a concept formed from infor-
mation theory, can reliably quantify the dependency be-
tween random variables [8]. MI is a scaler quantity be-
tween two random variable, measuring the uncertainty of
arandom variable, given knowledge of another.

Our MI-based downsampling algorithm is used to select
representative patients. Firstly, we assign a score to each
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Figure 1. Illustration of Mutual Information based Down-
sampling Algorithm

patient, according to the following scoring function:
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where P;, P; € dataset D represent for 445, and jy, patient,
respectively. The data length of patients maybe different
due to length of stay. Therefore, we estimate the MI via
nearest-neighbor based MI estimators [9]. After scoring
each patient, we divide all patients into L = 10 groups (of
approximately equal size) based on the descending order of
all scores. Therefore, patients with similar scores will be
grouped together and patients within the same group will
tend to be highly dependent on each other (see Figure 1).
Random sampling from each group will select represen-
tative patients of each group. Random proportional sam-
pling from all groups gives selective patients of the whole
dataset.

2.2. SMOTE

SMOTE [10] is considered as an effective upsampling
algorithm to generate synthetic samples. SMOTE firstly
identifies the feature vector, its nearest neighbour and take
the difference between two. Then it generates a new point
on the line segment by adding the random number to fea-
ture vector (see Figure 2). Unlike making copies of exist-
ing samples, SMOTE learns the topological properties of
the neighbourhood of points in the minority class. There-
fore, the classifier trained on the synthetic data generated
by SMOTE is less likely to overfit.

3. Performance Evaluation

3.1. Data Information and Preprocessing

The PhysioNet Computing in Cardiology Challenge
2019 dataset [4] contains the demographic, vital sign in-
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Figure 2. Tllustration of Data before SMOTE (Left) and

after SMOTE (Right) in 2D Space.

formation and lab test results of 27148 patients, at regular
1-hour intervals. A large number of features have missing
values, so we impute these corresponding features with the
latest historical values. We shift the target class ahead by 6
hours, so that we can predict sepsis 12 hours early. Finally,
we perform normalization on the dataset, so that the range
of feature values is between 0 and 1.

3.2. Benchmark Models

Four machine learning benchmark models are short-
listed and described below.

o The decision tree (DT) [11] is a tree-based algorithm for
classification. Training data is repeated split according to
splitting criteria (eg. entropy) with respect to an outcome
variable, such that child nodes are more homogenous. De-
cision tree handles imbalance data classification problems
well, and are benchmark models in many problems.

e The random forest (RF) [12] is an ensemble of deci-
sion trees. Bootstrapped samples of the training data are
trained, and majority voting is performed for the final clas-
sification process. RF is cost-sensitive as it can incorporate
class weights in the training process, penalising misclassi-
fication of minority class instances.

o The gradient boosting (GB) algorithm [13] minimizes
loss in decision trees, by training instances in a sequential
manner. The additional boosting step occurs to succes-
sively train on incorrectly classified examples, thus signif-
icantly improving the performance with respect to imbal-
anced data classifications [14, 15].

o The long short-term memory (LSTM) unit [16] is capa-
ble of learning information over a long sequence of tempo-
ral inputs. The unit utilises input, output and forget gates
to store information over long time intervals, regulating the
flow of information in and out of the cell. By overcoming
the problem of vanishing or exploding gradients through
memory blocks, the LSTM is designed for time-series data
predictions.
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No D-sample

D-sample to 75%

D-sample to 50% D-sample to 25%

F1 AUC-ROC F1

AUC-ROC F1

AUC-ROC F1 AUC-ROC

Have U-sample 0.245 0.522 0.284
No U-sample  0.236 0.529 0.265

0.519 0.303 0.532 0.288 0.514
0.514 0.285 0.523 0.317 0.535

Table 1. Intermediate Training Performance of Decision Tree with and without down/up sampling method

No D-sample

D-sample to 75%

D-sample to 50% D-sample to 25%

F1 AUC-ROC F1

AUC-ROC F1

AUC-ROC F1 AUC-ROC

Have U-sample 0.186 0.513 0.235
No U-sample  0.153 0.531 0.101

0.541 0.238 0.542 0.224 0.533
0.516 0.131

0.522 0.158 0.526

Table 2. Intermediate Training Performance of Random Forest with and without down/up sampling method

No D-sample

D-sample to 75%

D-sample to 50% D-sample to 25%

F1 AUC-ROC F1

AUC-ROC F1

AUC-ROC F1 AUC-ROC

Have U-sample 0.321 0.522 0.322
No U-sample  0.172 0.533 0.146

0.558 0.341 0.563 0.336 0.533
0.522 0.152 0.527 0.172 0.527

Table 3. Intermediate Training Performance of Gradient Boosting with and without down/up sampling method

No D-sample

D-sample to 75%

D-sample to 50% D-sample to 25%

F1 AUC-ROC F1

AUC-ROC F1

AUC-ROC F1 AUC-ROC

Have U-sample  0.285 0.505 0.303
No U-sample  0.112 0.519 0.267

0.504 0.335 0.527 0.356 0.524
0.504 0.212

0.486 0.117 0.502

Table 4. Intermediate Training Performance of LSTM with and without down/up sampling method

3.3. Experiment Setup

The whole dataset D € RN (N: number of samples;
M: number of features) is randomly split into two subsets:
training dataset and test dataset at patient level. Namely
that 80% of patients are used to train the classifier and the
rest 20% of patients are used for evaluation. Then we per-
form MI based sampling algorithm on the majority class
of training data to sample 75%, 50% and 25% of train-
ing dataset, respectively. After downsampling, we apply
SMOTE to do upsampling on the downsampled training
dataset to make sure that the number of samples in minor-
ity class and majority class are equal.

For decision tree (splitting criterion = entropy), gradient
boosting (number of estimator = 100) and random forest
(number of estimator = 45), we train them to perform 12-
hour early prediction. During testing, the missing values of
test data are imputed with the corresponding mean values
obtained from training data and only the latest time step of
test data is used for evaluation. For the LSTM based neural
network, it consists of 6 hidden layers while first two lay-
ers are LSTM with 5 and 10 units, respectively. The rest
four layers are dense layer with size = [256,128,64,32].
As LSTM requires three dimensional input to capture the
temporal relationship, we reshape the training dataset into
a three dimensional array € R¥*3*M via a sliding obser-
vation window of size equal to three (i.e., time step = 3).
Moreover, the LSTM based neural network is trained for

300 epochs using Adam [17] with a learning rate of 0.001,
batches of 128 and sigmoid activation function. During
testing, the missing values of test data are imputed with
the corresponding mean values obtained from training data
and all past observations of each patient are used to per-
form classification task. Finally, AUC-ROC and F1 score
[18] are used to evaluate the performance and both of them
are averaged over 10 runs.

34. Performance Comparison

In this subsection, we report intermediate training per-
formance in the form of F1 score and AUC-ROC values.
The performance for various classifiers with and without
down/up sampling are shown in Table 1 to Table 4. The
best performance for each classifier is highlighted in red
and bolded. In Table 1 to Table 4, the D-sample and U-
sample represents MI based downsampling and SMOTE
upsampling respectively. Using the SMOTE upsampling
method improves the performance (compare row 1 to row
2 in Table 1 - Table 4), while applying MI based down-
sampling algorithm further boosts the performance. The
best performance is observed using LSTM based neural
network (25% downsampling rate & SMOTE upsamling),
with an F1-score of 0.356 for 12-hour early prediction of
sepsis. By using the proposed method together with LSTM
based neural networks, our team, Kent Ridge Al, obtains a
utility score of -0.047, -0.288, -0.361 on the test set A, B,
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Prediction Horizon 12-Hour 9-Hour 6-Hour 3-Hour
F1 AUC-ROC F1 AUC-ROC F1 AUC-ROC F1 AUC-ROC
LSTM (D-sample to 25%) | 0.356 0.524 0.347 0.539 0.361 0.544 0.372 0.567

Table 5. Intermediate Training Performance of LSTM with different prediction horizons

C, respectively. Overall, our team (ranked 77th) obtains a
utility score of -0.164 on the full test set.

To examine the performance of different prediction hori-
zons (e.g., 9-hour early prediction), we also evaluate the
proposed two-step method via LSTM based neural net-
work (25% downsampling rate & SMOTE upsampling )
and the results are shown in Table 5. We observe that the
performance roughly increases while we reduce the predic-
tion horizon. We believe it is because that the relationship
between past features and label are stronger as we reduce
the prediction horizon, leading to better performance.

In Tables 1 - 5, we report the F1-Score and AUC-ROC
for the algorithms tested. We note that the accuracies for
the algorithms tested range from 0.57 to 0.63 in the exper-
iments we conducted.

4. Reflections

In this paper, we suggest a two-step method to address
the class imbalance issue in the given sepsis dataset. Our
approach consists of a mutual information based down-
sampling algorithm and a SMOTE based upsampling.
While we believe that this method has the potential to work
in theory, we acknowledge that this approach did not bear
fruit during the challenge itself. We suspect that the poor
performance is connected to how we pre-processed the
data and can be improved with proper feature engineering.
Specifically, we propose the following improvements: (i)
Using feature selection methods to select a relevant sub-
set of features [19]; (ii) Using trend features to track the
changes between feature values; (iii) Using a larger vari-
ety of imputation methods to treat missing values in the
dataset.
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