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Abstract 

Sepsis is caused by the dysregulated host response to 

infection and potentially is the main cause of 6 million 

death annually. It is a highly dynamic syndrome and 

therefore the early prediction of sepsis plays a key role in 

reducing its high associated mortality. However, this is a 

challenging task because there is no specific and accurate 

test or scoring system to perform early prediction. In this 

paper, we present a systematic approach for sepsis 

prediction. We also propose a new set of features to model 

the missingness in clinical data. The pipeline of the 

proposed method comprises three major components: 

feature extraction, feature selection, and classification. In 

total, 407 features are extracted from the clinical data. 

Then, five different sets of features are selected using a 

wrapper feature selection algorithm based on XGboost. 

The selected features are extracted from both valid and 

missing clinical data. Afterwards, an ensemble model 

consists of five XGboost models is used for sepsis 

prediction. The proposed algorithm is ranked officially as 

third place in the PhysioNet/Computing in Cardiology 

Challenge 2019 with an overall utility score of 0.339 on 

the unseen test dataset (our team name: Separatrix). 

 

 

1. Introduction 

Sepsis is defined as life-threatening organ dysfunction 

caused by a dysregulated host response to infection [1] and 

is often associated with lung, urinary tract, skin, and gut 

infections. The recent report of Center for Disease Control 

(CDC) shows that sepsis causes one out of every three 

hospital deaths [2] [3]. Besides the high mortality rate of 

sepsis, it imposes immense challenges to healthcare 

systems. From an economic perspective, sepsis implies 

high costs of hospital care with almost 17 billion USD 

annually in the United States [4] and 2.5 billion pounds in 

the UK [5]. Thus, early prediction of sepsis is a crucial 

element for appropriate clinical management and 

improvement of clinical outcomes. 

The recent clinical criteria of sepsis [1] in the general 

hospital ward setting, recommend that quick Sequential 

(Sepsis-related) Organ Failure Assessment (qSOFA) 

should be used as a rapid evaluation of sepsis risk. This 

means that the patient should have at least two of the 

following clinical criteria to be considered as a patient with 

suspected infection: respiratory rate of 22 per minute or 

greater, altered mentation, and systolic blood pressure of 

10 mmHg or less. Moreover, in [1], the SOFA≥ 2 score is 

determined to represent organ dysfunction. SOFA score 

monitors laboratory values and vital signs such as the 

fraction of inspired oxygen (FiO2), the partial pressure of 

oxygen (PaO2), platelets, liver bilirubin, and mean arterial 

pressure [1]. However, sepsis is a dynamic condition, and 

such criteria may not meet or present in all the time. This 

leads to inaccurate results of such approaches [6]. In 

addition, using clinical criteria for sepsis diagnosis in 

patients with critical situations (e.g., ICU patients) can be 

even more challenging due to the misleading symptoms 

caused by other diseases [7]. 

Despite the slow changes in sepsis definitions, several 

studies have focused on the development of Machine 

Learning models to overcome the aforementioned 

challenges. In [8], the proposed method achieved 

significantly higher accuracy compared to the three 

standard sepsis-related scoring systems (i.e., SOFA, 

qSOFA, and MEWS). In [9], a variant recurrent neural 

network model is proposed for sepsis prediction. Their 

proposed model revealed that ICU length-of-stay, heart 

rate, white blood cell count, and temperature are the most 

relevant features for sepsis prediction. In [10], a model 

based on Weibull-Cox proportional hazards mode is 

proposed to predict the onset of sepsis in an ICU patient 4 

to 12 hours prior to clinical recognition. Their method 

achieved the area under the receiver operating 

characteristic (AUROC) between 0.83–0.85. These models 

have achieved higher accuracy compared to traditional 

clinical criteria. However, further studies are needed to 

improve the robustness, false alarm rate, and 

interpretability of such models. 

In this paper, we explore the use of an ensemble learning 

technique (Figure 1) for sepsis prediction in ICU. The main 

contributions of this study are:
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Figure 1. The training strategy of the proposed method 

1) Investigating a comprehensive set of features and  

tracking the top clinically relevant features.   

2) Introducing discriminative features for revealing 

the patterns of missing values in clinical data. 

3) Designing a predictive model by ensembling 5 

classifiers. 

The remainder of this paper is organized as follows: In 

Section 2, the dataset is briefly described and the proposed 

method is explained. In Section 3, the evaluation results are 

presented and discussed. Finally, concluding remarks are 

outlined in Section 4. 

2. Materials and methods 

The dataset used in this competition is collected from 

63097 ICU patients in three distinct hospitals. The training 

set includes 40336 records from two hospitals (hospitals A 

and B), while the remaining 22761 patient records (from 

hospitals A, B, and C) are kept hidden to be used for final 

ranking. For each patient, eight vital signs, six 

demographics variables, and 26 laboratory values are 

provided for every hour. More detailed information can be 

found in [11]. The feature extraction, feature selection, and 

classification approach are described next. 

2.1. Feature engineering 

Often the clinical data are not collected consistently. 

Therefore, it is expected that the majority amount of data 

for some covariates is missing. It has been shown that the 

imputation of missing values for such covariates does not 

significantly improve the prediction performance [12]. On 

the other hand, the missingness may convey useful 

information [13]. Therefore, in this work, two different 

types of features are extracted. The first type of feature 

targets the covariates with less than 70% of missingness 

while the second type of feature focuses on the patterns of 

missing values in clinical data. The combination of these 

features forms a set of 407 features in total (see Table 1). 

Once the features are extracted, they are normalized to a 

mean of 0 and unit standard deviation. The extracted 

features are described as follows: 

The first type of features are extracted from 13 

covariates of heart rate (HR), pulse oximetry (O2Sat), 

temperature (Temp), systolic blood pressure (SBP), mean 

arterial pressure (MAP), diastolic blood pressure (DBP), 

respiration rate (Resp), age, gender, administrative 

identifier for MICU unit (Unit1), administrative identifier 

for SICU unit (Unit2), hours between hospital admit and 

ICU admit (HospAdmTime), and ICU length-of-stay 

(ICULOS). Before extracting the first type of features, the 

missing value imputation is carried out by linear 

interpolation. If the data is less than 3 hours (i.e., less than 

three observations), then the missing values are replaced 

with the mean value of the corresponding covariate in the 

training data. For age and gender, the missing values are 

replaced by the first valid value. If all the values in the 

given observations were missing, then they are replaced by 

mean values. Once the imputation is performed, the 

following features are extracted: 

(1) Sliding-window based features: Mean, minimum, 

maximum, median, variance, 95%, 99%, 5%, and 1% 

quantiles are calculated from the last 5 and 11 hours 

observations. We use two different time windows (i.e., 5 

and 11 hours) to capture the short- and long-term temporal 

evolution of covariates.   

(2) Non sliding-window based features: Energy, 

Shannon entropy, mean of the first differences, and the 

lengths of observations are calculated from the given 

observations. 

(3) The last observation values of the 13 covariates 

are also used as 13 separate features. 
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Table 1. List of the extracted features 

Type Features #features 

1 

Imputation, 

13 covariates 

Mean, minimum, maximum, median, variance, 95%, 99%, 5%, and 1% quantiles 

from the last 5 and 11 hours. 
198 

245 Energy, Shannon entropy, mean of the first differences, and the lengths of 

observations 
34 

last observation values of the 13 covariates 13 

2 

No imputation,  

38 covariates 

Mean and variance of LC 76 

162 Summation and variance of LCV 76 

Mean and variance of LO 10 

 

To calculate the second type of features, age and gender 

are excluded from the given covariates. These two 

demographic variables are constant for each patient during 

the monitoring and therefore their absence does not convey 

any information. To represent the missingness, we define 

the sequence abstraction. Each sequence is defined as a set 

of consecutive measurements where the values are only 

either missing or present. Therefore, each sequence can 

only have missing or present values. For instance, let’s 

imagine the SBP measurements for 6 hours are 
{𝑛𝑎𝑛, 122, 98, 𝑛𝑎𝑛, 𝑛𝑎𝑛, 123}, then based on the 

definition, we have 4 sequences of {𝑛𝑎𝑛}, {122, 98}, 
{𝑛𝑎𝑛, 𝑛𝑎𝑛}, and {123}. Using the sequence abstraction the 

following features are calculated (see Figure 2): 

(1) Mean and variance of the lengths of sequences 

along each covariate, LC.  

(2) Summation and variance of the lengths of 

sequences with only valid values (without missing) along 

each covariate, LCV. 

(3) Mean and variance of the lengths of sequences 

along each observation, LO, in the last 5 hours. 

It is worth mentioning that the input clinical data have 

varying lengths, and it is possible that the number of 

observations is not enough to extract the sliding-window 

based features. For such cases, the clinical data is padded 

using the first observation. The amount of padding equals 

to the difference between the number of observations in the 

given data and the number of needed ones. This enables us 

to transform the raw data into a feature space with a fixed 

length. Thus, discriminative methods, such as XGboost 

and random forest, can be applied to such dynamic data.  

 

Figure 2. Sequence abstraction for HR, Temp and SBP covariates 

2.2. Feature selection and classification 

The proposed classification algorithm consists of two 

main steps:  

(1) In the first step, five sets of best performing 

features and hyper-parameters are selected. We perform 

the feature selection and hyper-parameter tuning in a 5-fold 

cross-validation scheme using 10% of the original training 

data. For feature selection, we employ a wrapper feature 

selection algorithm based on XGboost (BoostARoota 

[14]). The importance metric is the number of times that a 

particular feature was split on in the XGboost algorithm. 

In addition, a grid search is used to find the best performing 

combinations of hyper-parameters. 

(2) In the second step, we used an ensemble of five 

XGboost models. XGboost is a decision tree based 

ensemble using a gradient boosting framework [15] and its 

effectiveness has been established in a wide range of 

applications especially in prediction problems. To train the 

proposed ensemble, we randomly split the remaining 90% 

of the original data into five equally disjoint sets. Then, 

each set is used to train a distinct classifier. Moreover, due 

to the imbalance problem between sepsis and non-sepsis 

observations, we separately balance the data for each 

XGboost using the random undersampling technique. 

Finally, we use the geometric mean to integrate the outputs 

of the five classifiers. The training strategy of the proposed 

method is shown in Figure 1. 

3. Results and discussion 

We test our predictive model in a 5-fold cross-validation 

scheme using the training data. The results are reported in 

Table 2 (for more information about the score and metrics 

refer to [11]). The obtained utility scores (AUROC, 

AUPRC, F-measure) on the unseen test set A, B, and C are 

0.422 (0.814, 0.102, 0.128), 0.395 (0.844, 0.110, 0.130), 

and -0.146 (0.793, 0.058, 0.044), respectively. Clearly, the 

performance of the proposed model on hospitals A and B 

(which are present in the training set) are robust with 

respect to our cross-validation. However, the performance 

drops drastically on the test set C. We believe that the main 

reason is that the missingness in hospital C has a different 
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Table 2. The results of the proposed method on the training data 

in a 5-fold cross-validation scheme and on the hidden test set. 

AUROC and ACC are area under the receiver operating 

characteristic and accuracy, respectively. 

Fold AUROC ACC Score 

0 0.8387 0.8394 0.4366 

1 0.8357 0.8418 0.4412 

2 0.8436 0.8477 0.4521 

3 0.8221 0.8451 0.3899 

4 0.8268 0.8464 0.4208 

Average  

   (std) 

0.8333 

(0.0078) 

0.8440 

(0.0030) 

0.4281 

(0.0215) 

The hidden test data  0.339 

 

pattern compared to other hospitals. Here, missingness 

represents human behavior in recording the covariates and 

does not convey medical information. Therefore, 

missingness should be used with caution. That said, it 

should be noted that all the contestants fail to achieve a 

high score on test set C even if they have not used 

missingness information in their proposed methods.       

Additionally, we observe that among the second type 

features (missingness) 102 out of 162 features were 

selected commonly using the BoostARoota algorithm. 

This shows the significance of the proposed features in 

sepsis prediction. Moreover, among the selected features, 

the HospAdmTime, the summation of LCV for TMP, age, 

Unit1, variance of HR and TMP in the last 11 hours were 

ranked among the top 10 features. 

 

4. Conclusions 

In this work, we proposed a systematic approach for 

sepsis prediction in ICU. We investigate a set of features 

to capture the transitional states of covariates by using two 

time windows with different lengths. In addition, we 

introduce a new set of features to represent the missingness 

in clinical data. We examined the importance of features 

using the BoostARoota algorithm and found that the 

missing data convey relevant information for sepsis 

prediction in two out of three hospitals. The proposed 

method is officially ranked as the third team with a utility 

score of 0.339 on the unseen data (our team name: 

Separatrix). 
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