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Abstract

In this work, we present a method to separate aortic
(A2) and pulmonary (P2) components from second heart
sounds (S2). The proposed approach captures the different
dynamical behavior of A2 and P2 components via a joint
Gaussian mixture model, which is then used to perform
separation via a closed-form conditional mean estimator.

The proposed approach is tested over synthetic heart
sounds and it is shown guarantee a reduction of approx-
imately 25% of the normalized root mean-squared error
incurred in signal separation, with respect to a previously
presented approach in the literature.

1. Introduction

Cardiac auscultation represents arguably the most cost-
effective screening method for a number of heart dis-
eases. Precious diagnostic information, especially regard-
ing the mechanical activity of heart valves, can be retrieved
from the analysis of heart sounds. In addition to diseases
signalled by the presence of extra sounds like murmurs,
clicks, etc., it is possible to extract useful information from
the analysis of the waveforms associated to fundamental
heart sounds. In particular, the second heart sound (S2)
is formed by two constituent components: one generated
by the closure of the aortic valve (usually called the A2
component) and one generated by the closure of the pul-
monary valve (which is called the P2 component). The
analysis of the P2 component has been attracting attention
as a possible method to estimate the pulmonary artery pres-
sure (PAP) in a noninvasive manner, thus avoiding right
heart catheterization [[1.[2]].

On the other hand, the separation of the A2 and P2 com-
ponents of S2 sounds represents a very challenging prob-
lem, due to their large overlap in the time and frequency
domain and their morphological similarity. Moreover, A2
and P2 components cannot be modeled as independent sig-
nals, due to the interaction of the mechanical processes that
originate them. For these reasons, the application of stan-
dard methods for blind source separation as independent
component analysis (ICA) [3]] and morphological compo-
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nent analysis (MCA) [4] are not suitable to solve the A2-P2
separation problem.

Therefore, some separation approaches specifically tai-
lored to the characteristics of S2 signals have appeared in
the literature. Some of these approaches assume that A2
and P2 components can be modeled accurately via a pre-
determined kind of waveform (e.g., chirp signals [1], win-
dowed sinusoids [3]], etc.) whose parameters are then fitted
to the recorded S2 data via different optimization meth-
ods. A different approach has recently emerged which re-
frains from adopting a predetermined waveform model and
instead uses the different dynamical behavior of A2 and
P2 components in different S2 sounds to perform separa-
tion. In particular, Tang et al. [6] leverage the fact that A2
components usually occupy the same position in different
S2 sounds, whereas P2 components experience a shift ac-
cording to the respiration phase of each recorded S2 sound
(i.e., P2 components experience a more significant delay
from A2 components during inspiration phases than dur-
ing expiration phases). Therefore, assuming that A2 and
P2 components keep approximately the same form (apart
from time shifts) in successive S2 sounds, the A2 com-
ponents are estimated by averaging over the collected S2
sounds and the P2 components are obtained by subtraction.

Building on similar modeling assumptions, the proposed
approach aims to capture the details of A2 and P2 com-
ponents by using a joint Gaussian mixture model (GMM)
prior. In particular, the proposed approach learns the shape
of A2 and P2 from training data and uses such knowl-
edge to separate the constituents of unseen S2 sounds. The
choice of GMM priors is determined by their ability in rep-
resenting different kinds of real-world signals, as patches
extracted from natural images [7]], heart sound segments
[8]], etc., and their mathematical amenability in deriving
fundamental limits and closed-form algorithms for signal
recovery [7,9l/10]]. Therefore, inspired by recent results on
the use of a GMM to perform signal de-mixing of [[10]], the
proposed method is based on the following steps:

1. Collection and alignment of different S2 sounds from a
given heart sound recording.

2. Modeling of patches extracted from multiple A2 and P2
sounds via a joint GMM.
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3. Separation of unseen S2 patches into their components
using a closed-form conditional mean estimator.

Then, the potential of the proposed approach is tested
over a set of synthetic signals generated according to the
windowed sinusoid model presented in [5]].

The following notation is adopted in the remainder of
this paper. The identity matrix of dimension n X n is
denoted by I,, . The transpose and Moore-Penrose pseu-
doinverse operators are denoted by (-)T and (-)*, respec-
tively. The multivariate Gaussian distribution at a vector
x with mean g and covariance matrix 3 is denoted by
N (x; p, X) and E[-] denotes the expectation operator.

2. Methods

In the following, we present the mathematical model
used to describe A2 and P2 components and the corre-
sponding source separation algorithm.

2.1. Joint GMM for A2 and P2 components

We assume that heart sounds are acquired with a given
sampling frequency Fy, filtered, normalized, and then seg-
mented in order to determine the position and the bound-
aries of the corresponding S2 sounds. The samples asso-
ciated to the i-th S2 sounds extracted from a given record-

ing are denoted by s;(n) forn = 0,...,N — 1 and
1=0,...,I —1, and we assume that
si(n) = a;(n) + pi(n), )]

where a;(n) and p;(n) represent the A2 and P2 compo-
nents, respectively.

The proposed separation method is based on the obser-
vation of consecutive S2 sounds from a given heart sound
recording. In particular, sample vectors of interest are
obtained by picking N; samples from [V, consecutive S2
sounds and by stacking them in a single Ny N, x 1 vector
as follows:

=T =T =T T
Smj = [SmjSmjttr - Smjing-1] 5 @

where §,,, ; = [sj(m), sj(m+1),...,s;(m+ N, — 1)]T.
This means that the vector s,,, ; contains [V; samples start-
ing from the index m from [V, consecutive S2 sounds in
a heart sound recording, starting from the heartbeat with
index j. A similar construction can be applied to the A2
and P2 components in (I)), thus obtaining the vectors am, j
and pn, j, respectively, such that 8, j = am j + Pm,j-

Then, on defining the vector Xm j = [ay, ;, Pa ;] > We
can also use the following matrix notation:
Sm,j = PXm,j; ©)
where
P = [Iny Ny Ingv ] - O]

Irrespective of the indexes m and j, the vectors ap, j
and pm j containing sample from A2 and P2 components
from different S2 sounds are modeled via a joint GMM.
Therefore, in order to simplify that notation, we can drop
the subscripts and assume that vectors x = [aT, pT]T
drawn from the multivariate distribution

Z mN (% i, B9, 5)

where K is the number of Gaussian components in the
GMM, and the k-th Gaussian component has mean
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2.2.  Separation algorithm

The proposed separation algorithm is based on model-
ing portions of A2 and P2 components via a joint GMM
and it consists of two phases: training and separation. In
the training phase, samples from available A2 and P2 com-
ponents are collected to form a training dataset of vectors
x. Then, using such data, the parameters characterizing the
joint GMM distribution in (3)), i.e., the component proba-
bilities 7, the mean vectors u,((k) and the covariance ma-
trices 25}‘> , are estimated using the expectation maximiza-
tion (EM) algorithm [[11]].

Then, the separation phase consists in recovering vec-
tors x from the observation of the corresponding vectors
s = ®x. Such inversion can be performed via the condi-
tional mean estimator

x =E[x|s] = /xp(x|s)dx, (3)

which can be shown to minimize the mean-squared error
MSE = E [|x — x]|?] . Most notably, modeling signals
of interest with joint GMMs implies that the correspond-
ing conditional mean estimator can be expressed in closed
form. Therefore, the adopted separation algorithm can be
expressed as [10]:

K
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Once obtained the conditional mean estimate X =
[aT,pT]T, the vectors & and P can be used to build es-
timates of the A2 and P2 components d;(n) and p;(n). In
particular, overlapping vectors can be extracted from the
recorded heart sound signals, thus implying that multiple
vectors & and p may contain estimates for a given sam-
ple of a;(n) or p;(n). In this case, sample estimates are
obtained by simple averaging.

3. Numerical results

The performance of the proposed method in separating
A2 and P2 components is compared with that provided by
the method in [6]]. Performance is evaluated in terms of the
normalized root mean-squared error (NRMSE) achieved in
the reconstruction of A2 and P2 components.

3.1.  Signal model

The tests reported in this work consider synthetic heart
sounds generated according to the waveform model de-
scribed in [S]. In particular, the A2 and P2 components
of the i-th S2 sound of a given recording are modeled as
windowed sinusoids, with Gaussian windows, i.e.,
ai(n) = w!” (n) cos(27rf(“)FE + 0@ — p{y 4 2D ()

%

pi(n) = wz(P) (n) COS(QWf(p)FE + o) — MEP)) + zi(p)(n),

where
(a)y2
(a) _ () —(n/Fs — M)
w; (’I’L) Q' exp < 25(0,)
(P)y2
®) 0y — o (p) —(n/Fs — ;")
w; (’I’L) a7 exp ( 2B(p) 3
and 2\ (n) and 2"’ (n) represent additive white Gaussian

noise (AWGN) components which account for deviations
of the recorded signals from the theoretical model adopted.
As described in [5], the amplitude parameters o) and
o) are drawn from normal and log-normal distributions,
respectively. The spreading parameters 5(*) and 5) are
drawn from log-normal and uniform distributions, respec-
tively. The frequency parameters f(*) and f() are drawn
from log-normal distributions, whereas the phase param-
eters 0(*) and 6") are drawn from uniform distributions.
The delay parameters ul(-a) are drawn from a log-normal
distribution. The parameters defining such distributions
are inferred by fitting such distributions to the data ob-
tained from a cohort including 150 subjects [5]]. Finally,
the delay parameters ul(»p ) are drawn from uniform distri-
butions, whose parameters were chosen according to the
statistics of the A2-P2 split A; = ,ugp ) uz(-a)considered in
each test.
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Figure 1. NRMSE versus maximum A,. SNR = 30 dB.
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Figure 2. NRMSE versus SNR = 30 dB. Minimum A; =
10 ms, maximum A; = 40 ms.

3.2. Results

Synthetic heart sound signals are generated with sam-
pling frequency F; = 1 kHz. Vectors of interest are ex-
tracted from such signals according to the procedure de-
scribed in Section [2.1] by picking N; = 8 samples from
N, = 8 consecutive S2 sounds. Such vectors are overlap-
ping in the time domain, as they are extracted from heart
sound signals with a stride of 2 samples.

A training dataset is formed by generating 100 heart
sound recordings, each containing 16 heartbeats. From this
data, a joint GMM with K = 20 Gaussian components is
inferred, which models the vectors x = [a™, pT]T contain-
ing samples from the A2 and P2 components. Then, the
proposed separation algorithm and the algorithm described
in [6]] are applied to further 400 heart sounds, each contain-
ing 16 heartbeats, which are generated independently from
the training data.

First, the performance of the considered separation al-
gorithms is tested against different values of A2-P2 splits.
The NRMSE in recovering A2 and P2 components from S2
sounds is reported in Fig. [T} when the split is distributed
uniformly between 10 ms and values ranging from 20 ms
to 90 ms. As expected, source separation is less reliable
when the split is lower, due to the increased time-domain
overlap between the A2 and P2 components. On the other
hand, the proposed approach is shown to outperform sig-
nificantly the method described in [|6] for all splits consid-
ered.
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Then, in order to evaluate the robustness of the proposed
method against deviations of the recorded heart sound sig-
nals from the adopted joint GMM, simulations have been
run by training the GMM with sounds with a given amount
of distortion (corresponding to an SNR value of 30 dB) and
testing the model with heart sounds with distortions with
different amplitude, corresponding to SNR values ranging
from O to 30 dB. The corresponding NRMSE values are
reported in Fig. 2] which shows how the proposed method
guarantees more accurate reconstructions with respect to
the algorithm in [6] for all the different distortion values
considered.

In general, using joint GMM priors to model portions of
fundamental heart sound components extracted from suc-
cessive heartbeats is shown to have a considerable poten-
tial in solving the inverse problem associated to the sep-
aration of A2 and P2 components from the observation
of S2 recordings. This is mainly motivated by the abil-
ity of GMM priors in modeling different complex signals
and in discriminating efficiently signals that occupy low-
dimensional manifolds formed by the union of subspaces
with little intersection [[10].

On the other hand, the main limitation of the proposed
approach is represented by the need of a training dataset
containing separated A2 and P2 components to infer the
parameters of the joint GMM prior. This requirement turns
out particularly challening when considering the applica-
tion of the proposed approach to real-world heart sound
recordings, due to the scarcity of available datasets with
annotations discriminating the different components of S2
sounds.

4. Conclusion

A novel method to separate A2 and P2 components from
S2 recording has been presented. The method, which is
data-driven, models segments of A2 and P2 components
extracted from successive S2 sounds via a joint GMM.
The proposed method is shown to recover A2 and P2 com-
ponents more precisely than other algorithms previously
presented in the literature. Also the proposed approach
shows promising results regarding its robustness against
small A2-P2 splits and against signal deviations from the
trained model.

Future work encompasses the test of the proposed algo-
rithm with real heart sound data recordings.
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