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Abstract

Sepsis is one of the leading causes of morbidity and
mortality in hospitals. Early diagnosis could substan-
tially improve the patient outcomes and reduce the mor-
tality rate. In this paper we propose a machine learn-
ing approach for anomaly detection to aid the early de-
tection of sepsis. Using the medical data of over 40,000
patients [1|], we use both unsupervised and supervised
methods to extract relevant features from the data, and
then use standard classification approaches to predict sep-
sis six hours before clinical diagnosis occurs. To extract
features, we used the reconstruction error of an auto-
encoding neural network trained on control patients free
of sepsis, and used random forest classifiers to learn the
most important features for the classification of patients.
We then combined the features from both of these ap-
proaches with a variety of standard classification models.
Cross-validation as well as the asymmetric utility function
designed for this challenge are used to evaluate the re-
sulting models. We obtained a utility function score for
the full unseen dataset of 0.177 (Team Kriss); achieved
with a logistic regression classifier. All the implementa-
tion is publicly available at https://github.com/
ineskris/SepsisChallenge—-Cinc2019

1. Introduction

Sepsis in one of the highest leading causes of hospital-
ized patients mortality worldwide [2]]. Machine learning
techniques have been used previously to improve the un-
derstanding sepsis [3]] and to improve sepsis prediction [4].
As a contribution to the Physionet/Computing in Cardiol-
ogy Challenge 2019 [1]], this paper focuses on the imple-
mentation of a modelling pipeline using ML techniques to
detect adverse events [ as sepsis.

1.1.  Sepsis condition

Sepsis is defined as a life-threatening organ dysfunction
caused by a dysregulated body’s response to infection [6]].
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Sepsis follows a continuum through severe sepsis to septic

shock, starting with the systemic inflammatory response

syndrome (SIRS). The early detection of sepsis is highly

valuable and may potentially save a patient’s life [7], min-

imize medical complications, and reduce the cost to the

healthcare system [8]]. A patient is diagnosed SIRS if they

meet at least two of the following criteria :

o Temperature > 38 °Cor < 36 ° C

« Heart rate > 90/min

« Respiratory rate > 20/min or PaCO2 < 32 mm Hg

« White blood cell count > 12000/mm? or < 4000/mm?.
By interrogating a large dataset of hospitalized patients,

our aim is to identify which clinical measurements can best

be used to predict sepsis, and moreover, to train models to

predict the probability a given patient will develop sepsis.

1.2. Anomaly detection

Sepsis detection can be seen as an anomaly detection
problem where you may think about an individual who
developed sepsis as a patient with specific abnormal rep-
resentative features, i.e., for each patient, we aim to de-
tect a change from their usual clinical measurements. We
use data provided as part of the Computing in Cardiol-
ogy Challenge 2019 [[1]] which contains clinical data from
40,336 ICU patients, of which 2,932 develop sepsis. The
aim is to distinguish between the usual variation in patient
data that occurs in ill patients who don’t have sepsis, with
the change in measurements that occur in patients who de-
velop sepsis.

Our approach is to use a selection of standard classi-
fication methods, trained using carefully learned features
based on two machine learning methods, random forests
(RF) and auto-encoding neural networks (AENN), both of
which have proven to be effective at extracting important
features, and at identifying irregularities in data.

1.2.1. Supervised learning problem

A random forest [9] consists of multiple random deci-
sion trees, where each individual tree gives a class predic-
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Figure 1: Data processing pipeline and feature selection

tion. To classify a new instance, the forest chooses the
classification having the most votes over all the trees in the
forest. As a classifier, random forest performs an implicit
feature selection, using a small subset of variables for the
classification. And Gini importance can be used to indicate
how often a particular feature was selected for a split [[10].

1.2.2. Unsupervised learning problem

Sepsis is detected in 7% of the patients in our data.
Since abnormality is a low probability event, data from the
abnormal class are rare and detection can be targeted as
an unsupervised learning problem. Unsupervised anomaly
detection techniques detect anomalies in an unlabelled data
set under the assumption that the majority of the instances
in the data set are healthy (normal) patients, as in this case.
Autoencoders [[11]] are a type of artificial neural network
which learn to copy its inputs to its outputs, via a hidden
layer of limited size. The representation of an input in its
hidden layer can then be seen as an efficient compression
of the data. We can use them in an anomaly detection sce-
nario [|12] considering a neural network trained only on the
normal patients. For a new instance, we expect the recon-
struction error to be higher for abnormal patients.

2. Materials and Methods

2.1. Data pre-processing and correlation
analysis

For each patient, we used 40 clinical measurements
over time, including demographics, vital signs, and lab-
oratory values from where we eliminated variable which
had greater than 80% missing values, except Bilirubin di-
rect, Lactate, PTT, Creatinine, WBC, Glucose which are
known as significant variables for detecting sepsis. In addi-
tion, the variables Unitl and Unit2 are equally distributed

across the whole dataset, and are uncorrelated with the sep-
sis label y, and were therefore removed. SBP and DBP are
highly correlated with MAP via the relationship MAP =
(SBP + 2*DBP) / 3, and they were discard for the RF fea-
ture selection but kept in the final prediction. For the labo-
ratory values remaining variables, we impute any missing
values with the mean obtained from the healthy group for
this variable if the patient is healthy and conversely if the
patient is sick. For testing on the unseen dataset, we impute
the mean between both groups if there are missing values.
For the vital signs variables, we impute any missing val-
ues by filling gap with the non missing values forward or
backward along a Series. We merged all our patient files
and add an extra column /D for the patient identifier. The
variable O2Sat corresponds to the pulse oximetry percent-
age, and would be controlled for ventillated patients. Our
methods find that O2Sar is not appearing as a predictive
variable (See Fig. 3), and we did not include this variable
in the analysis. For the demographic variables, we select
Age, Gender and ICULOS. The data processing pipeline is
described in Fig. 1. In the following, we kept 5500 files for
final evaluation including 500 patients with sepsis.

2.2. Random forest importance features
computation

We want to evaluate the importance of the remaining
features in the prediction of sepsis. We split the dataset (of
40,336 - 5,500 = 34,836 patients) into training and test sets
in proportion 70:30. Using the training data, we perform a
5-fold cross-validation. The Gini importance was used to
calculate feature importance from the RF [[10].

2.3. Auto-encoding neural networks

We train a dense feed-forward neural network auto-
encoder using only the patients who do not have sepsis.
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Figure 2: Auto-encoder Neural Network architecture

During training, we minimize the L, reconstruction error
(RE), which is the mean squared distance between input
and output : L(X,X') = || X — X'||3. We use the se-
lected features from the RF as well as the laboratory vari-
ables as inputs, and the neural network architecture used,
composed of only dense layers (7/56/392) is described in
Fig. 2. We use the auto-encoder by passing patient data
through it and evaluating the reconstruction error for each
row measurement. This will be an additional feature for
the classification.

Data processing, feature extraction, and classification
were all performed using Python 3.6. We used Keras
in Tensorflow for the AENN and the library Scikit-
Learn for classification.  All the implementation is
available in : https://github.com/ineskris/
SepsisChallenge-Cinc20109.

3. Results

3.1. Feature importance

Fig. 3 shows the relative importance of each feature as
estimated by the random forests and the Gini importance.
As might be expected, the variable Age is the most signifi-
cant in line with previous work [[13]][14]]. Sepsis is equally
prevalent in both genders, and so as expected the Gender
variable is judged to be of low importance. The variable
02Sat will not be use in the AENN.

3.2. Reconstruction error

Fig. 4.a shows the observed distribution of reconstruc-
tion errors evaluated using a set of 1,000 patients (from
the test set), half of who have sepsis. Observe that the
RE for those with sepsis is higher on average than for
those without sepsis. Precision and recall are commonly
used to evaluate the accuracy of anomaly detection prob-
lem. In Fig. 4.b, the precision/recall shows how the trade
off between missing an abnormal patient and the cost of
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Figure 3: Feature importance according to the random for-
est.

falsely flagging a patient who is healthy according to dif-
ferent threshold for the RE. Based on the utility function
provided by the challenge [1]], we want to make the maxi-
mization of the recall prevail. Taking a RE = 4000 makes
sense (Fig. 4) for this particular dataset.

3.3. Results Model

Using the expected utility function from the challenge,
logistic regression was found to be the classifier with the
highest expected utility (using the class weight module to
emphasis on the abnormal classes).

Table 1: Challenge results on unseen dataset

Datasets Utility Score  AUROC  Accuracy

Test Set A 0.251 0.583 0.846

Test Set B 0.169 0.562 0.865

Test Set C -0.117 0.614 0.790
4. Conclusion

Anomaly detection methods enabled us to identify from
a patient’s data unusual patterns which do not conform to
expected behaviour. In this paper, we used features ex-
tracted from the RF and a new feature, the RE obtained
from the AENN, to predict sepsis with a classical logis-
tic regression model. The method was validated on Phy-
sioNet Challenge 2019 dataset and the results are encour-
aging, suggesting that the early prediction of sepsis is an
achievable task (Utility Score = 0.177, Team Kriss). Ideas
develop in this paper were used for the Hackathon (Team
Sepsyd) and the utility score obtained was 0.329.
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