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Abstract

Early prediction of sepsis is a clinically important, yet
remains challenging. As machine learning develops, there
have been many approaches for prediction of sepsis using
neural network-based models. In this work, We propose
various methods including feature engineering, regular-
ization technique, and train data sampling methods, which
can boost the performance of the model. Our approach
consist of three-component: a feature engineering, an aux-
iliary loss, and a manipulation of training distribution. In
feature engineering, we employed a novel input imputation
method that combines input decay, masking, and duration
of missing and input transformation. As for regulariza-
tion, we used the reconstruction error as the auxiliary loss.
Meanwhile, we manipulated the distribution of training
sample using normal point re-sampling and population-
based sampling. On the validation set, our approach im-
proved the performance of LSTM as AUROC/AUPRC of
0.045/0.017, and the performance of transformer is en-
hanced AUROC/AUPRC of 0.034/0.024. Finally, we sub-
mitted our transformer trained with proposed method on
the official test set and obtained the utility score of 0.291
(Team name:vn, Rank:23).

1. Introduction

Sepsis is a life-threatening disease caused by an uncon-
trolled response to infection. In worldwide, an estimated
30 million people develop sepsis, and 20 percent of them
die from it every year [1]. Missing golden time for appro-
priate treatment is considered as the main reason for mor-
tality [2]. For this reason, early identification is critical for
improving sepsis outcomes, yet remains challenging [3].

As machine learning technologies develop, there have
been many studies applying a statistical model to pre-
dict sepsis [4]. In the meantime, a deep neural network
emerges as they show superior performance to existing sta-
tistical models [5, 6]. Most works, however, concentrated
on building architecture, and training techniques have not
been explored thoroughly.

In this work, we introduce several techniques that im-
prove the performance of various neural network for the

early prediction of sepsis. After exploring various tech-
niques for improving the neural network, we suggest fol-
lowing three methods in this study:

· Input imputation and transformation
· Regularization via auxiliary loss
· Manipulation of training data distribution

We applied these methods on widely used neural net-
work models for sequential data; Long Short Term Mem-
ory(LSTM) and transformer; and studied the effect of each
methods.

2. Methods

In this chapter, we describe the database employed in
developing the model, the structure of the default neural
network, methods to improve the neural network, and eval-
uation method.

2.1. Data

The subset of the entire database is utilized as the model
development, and the rest of the data is used as the official
test from Physionet Challenge 2019. For the convenience
of a term, we call the data employed in the model devel-
opment as the internal data, and official test data as the
external data. The internal database is collected from two
hospitals consisted of 20,336 and 20,000 patients, respec-
tively, of which 1,790 and 1,142 patients underwent sepsis
in each hospital. Forty variables, including vital, labora-
tory, and demographics, were used as predictor variables
as the inputs. Twelve-hour prior to onset of sepsis was
used as the label. Detail information about the database
can refer to [7].

2.2. Default Model

LSTM & Transformer The architectures adopted in
this work are LSTM and transformer those which capture
underlying characteristics of time series data. First, three-
layer of LSTM with the residual connection is employed as
the first default model. Each layer contains a unit of 200.
In the meantime, a three-layer of the transformer layer is
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implemented as the second default model. The structure in
detail of the transformer model is identical to [8].

Hyperparameters for the model The learning rate of
1e-3 with Adam optimizer is applied for the training. The
batch size for training is 32. Dropout is employed at an
input of each layer of LSTM, multihead-attention layers of
LSTM, and a classifier of both architecture as 0.1, 0.1, and
0.5, respectively. L2 regularization with a coefficient of
1-3 is applied. Every variable is normalized with z-score
based on the training population.

2.3. Proposed methods

Performance improvement was studied by applying the
following methods without any changes to the model. At
first, feature engineering method is presented. Subse-
quently, Auxiliary loss for regularization and manipulation
of training sample are introduced.

2.3.1. Feature engineering

EMR data unavoidably contains missing observation
induced by medical events, abnormalities, and inconve-
nience. There are several methods to handle missing val-
ues of EMR data, including forward-imputation, mean-
imputation, and utilization of masking [9, 10]. Forward-
imputation assumes missing values as same as its last mea-
surement. Masking is used to distinguish the true values
from imputed values, which is often applied with a dura-
tion of missing. Recently, [11] suggested a novel missing
value imputation model that decays the missing value to
the default value as the difference between its last obser-
vation and current time increases. Meanwhile, variables
of EMR tend to be non-stationary because they reflects the
status of patients, which is more challenging to learn the
attributes of the sequence [12]. To handle the problem, we
computed difference between adjacent time step of each
variable, which removes the temporal trends. In this work,
we combined various approaches including decay to de-
fault imputation (4), masking (1), duration of missing (2),
and adjacent difference value. The entire set of input is
described in (5).

md
t =

{
1, if xdt is observed
0, otherwise (1)

δdt =

 1 + δdt−1, if t > 1,md
t−1 = 0

1, if t > 1,md
t−1 = 1

0, if t = 1
(2)

γt = exp(−max(0,Wγδt + bγ)) (3)

x̂dt ← md
tx
d
t + (1−md

t )γ
d
xtxdt (4)

Xt = [x̂t;mt; γt; x̂t − x̂t−1] (5)

2.3.2. Auxiliary loss for regularization

The primary loss function employed in training is the
cross-entropy function. Additionally, we adopted recon-
struction loss to prevent the model from overfitting on a
training dataset. The reconstruction error is computed as
the L2 distance between input and linearly transformed
output of the model (6).

Loss = || [x̂; x̂t − x̂t−1]− reconstructed values ||2 (6)

2.3.3. Method of training data sampling

Data resampling The model trained on the skewed dis-
tribution of class tends to have difficulty in learning the
properties of a minority class and is biased to the majority
class [13]. In the internal data, the number of the sepsis
label is only 1 of 30 of the normal label, which probably
leads to the difficulty in training described above. To han-
dle this problem, we oversampled minority class data so
that balanced the class ratio in the training sample. Fur-
thermore, we additionally manipulated the distribution of
normal data point. The normal data point is composed
of normal data point from sepsis patients and normal data
point from non-sepsis patients, and the ratio between them
is 1:8. We tested several ratios between the normal point
from sepsis patients and non-sepsis patients and acquired
the biggest increase in performance from ratio 1:4.

Population-based sampling We found that the perfor-
mance of the model decreases whenever a specific portion
of the dataset flow into the training process. It means that
some part of data deteriorate training. We parallelly trained
the model on five subsets of randomly selected samples
from the bootstrapped data pool, and choose the model
with the highest performance among them to handle the
problem. At every epoch, the parallel training begins from
the best model of the previous epoch.

2.4. Evaluation

The internal database is divided into three-component:
training, validation, and intermediate data set. The inter-
mediate data set is hold out during the model training and
tuning and used for the comparison of the various tech-
niques in the internal database. Each of set compose of
60, 20, and 20 percent of the internal database. The ra-
tio of hospital A and B are equal in each set. As for per-
formance metrics, we used Area Under Receiver Opera-
tor Curve (AUROC), Area Under Precision-Recall Curve
(AUPRC), and the score function provided by Physionet
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Table 1. The intermediate result of utilization of proposed methods on LSTM. The red-colored section indicates three
lowest-score and the blue-colored section indicated three highest-score.

Table 2. The intermediate result of utilization of proposed methods on transformer. The red-colored section indicates three
lowest-score and the blue-colored section indicated three highest-score.

Challenge 2019. We evaluated the performance using a
sum of AUROC and AUPRC during model development
and the utility score for the intermediate result. Lastly, one
of the model from the intermediate result is selected and
tested on the external test set.

3. Results

Intermediate result We trained LSTM and transformer
on various combination of feature engineering, regulariza-
tion and training data sampling. Table 1 is the result of
a combination of suggested methods on the intermediate
set. Blue-colored sections mean the three highest meth-
ods based on score, and the red-colored sections mean the
three lowest methods. It is found that the performance has
increased when the proposed methods are applied. In the
intermediate set, LSTM with proposed methods achieved
the performance with the AUROC/AUPRC of 0.773/0.127
and the score of 0.287. Comparing to the baseline, the per-
formance gain was AUROC of 0.045, AUPRC of 0.017,
and score of 0.080 (Table1). Similary, Transformer with

proposed methods achieved the performance with AU-
ROC/AUPRC of 0.819/0.144 and the score of 0.376. The
performance gain is AUROC of 0.034, AUPRC of 0.024,
and the score of 0.079, respectively (Table2).

Test result We submitted three-layer transformer which
is trained with proposed techniques for the result from the
external database. Our model achieved AUROC/AUPRC
of 0.793/0.092, 0.812/0.083, and 0.771/0.038 from exter-
nal test set A, B, and C. Also, we acquired the scores of
0.387, 0.351, -0.251 from set A, B, and C. The score on
the entire test is 0.291. The detail of the result on the test
set is described on table 3.

4. Discussion

Other methods Besides the methods described in the
paper, we also explored various techniques, including the
box-cox transformation of input variable , heteroscedas-
tic uncertainty, and manifold mix-up. However, those do
not show the improvement of the performance in the inter-
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Table 3. The result of entire test set from 3-layer trans-
former with proposed methods.

mediate set. It seems that many popular methods are not
effective in sepsis prediction task.

Limitation & Future work Experiment for hyperpa-
rameter tuning has not been conducted thoroughly in this
work. We expect that hyperparameter optimization such
as learning rate, weight decay rate, optimization method,
and reconstruction loss ratio, could further enhance the
performance. Various architectures of neural network for
early sepsis prediction have been suggested in Physionet
Challenge 2019. We expect that the performance of those
model can be further improved with our approaches.

5. Conclusions

In this work, we present various feature engineering and
training techniques for sepsis prediction from clinical data.
Utilizing proposed methods, we demonstrated the perfor-
mance improvement on LSTM and transformer. In the in-
termediate set, our approach improved the performance of
LSTM as AUROC/AUPRC of 0.045/0.017 and the score of
0.080. Also, the performance of transformer is increased
AUROC/AUPRC of 0.034/0.024 and the score of 0.079.
Finally, we submitted three-layer transformer trained with
proposed methods and obtained the final score of 0.291.
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