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Abstract

Early detection and treatment of sepsis is of utmost im-
portance concerning sepsis outcome and costs. However,
revealing patterns in vital signs and laboratory measure-
ments which facilitate reliable prediction of sepsis onset
remains challenging. Especially exploiting the time series
characteristic of those measurements is expected to play a
major role concerning successful sepsis prediction. Within
this work, we propose a stacked combination of a recur-
rent neuronal network (RNN) and a light gradient boosted
machine (LGBM) to target the objective of sepsis onset
prediction. Here, 8 vital signs, 26 laboratory measure-
ments and 3 demographic parameters are included as in-
put to our classification model. Our last running model
achieved a utility score on full test set of 0.114 (TU Dres-
den - IBMT).

1. Introduction

This work addresses Early Prediction of Sepsis from
Clinical Data — the PhysioNet Computing in Cardiology
Challenge 2019. For detailed information on the chal-
lenge, please read and cite the upcoming publication [1].
The authors of this paper form the team TU Dresden -
IBMT as referenced in the challenge ranking.

To this day, sepsis exhibits a high mortality rate if not
treated appropriately in time [2]. As a consequence, reli-
able sepsis onset prediction is an active field of research
and various approaches have been proposed in the litera-
ture [3,4]. Also the Physionet Challenge 2019 targets de-
velopment and evaluation of a prediction algorithm based
on a comprehensive dataset. Within the challenge, a pre-
defined utility score is to be optimized which rewards true
positive and penalizes both false positive and false negative
predictions [1].

The provided dataset consists of 40336 electronic health
records with 2932 records that exhibit sepsis at a given
point in time. Hereafter, we use the terms sepsis record and
non-sepsis record to distinguish between the two groups.
Each record comprises routine vital signs, laboratory mea-
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surements and demographic data of one in-patient stay ac-
quired from an intensive care unit. Concerning the gold
standard, the latest sepsis definition from 2016 [2] is used.

Within this contribution we propose a stacked compo-
sition of two machine learning algorithms and additional
feature reinjection as detailed in the following.

2. Methodology

We propose a stacked combination of a recurrent neural
network (RNN) and an ensemble of decision trees trained
with the light gradient boosted machine (LGBM) algo-
rithm [5]. The complete pipeline from raw data input to
the final classification output is shown in figure 1. Here,
raw data denotes the data as it was provided for the chal-
lenge. This raw data is characterized by a large propor-
tion of missing values, in particular for laboratory mea-
surements.

The combination of an RNN and a decision tree en-
semble is uncommon and rarely seen. We decided to re-
alize such an approach for several reasons. First of all,
we wanted to exploit the RNN’s well-known capability
of discovering time dependent patterns. Hence, we only
use dynamic parameters for training the RNN. We assume
these patterns to be of utmost importance for the early de-
tection of an upcoming sepsis manifestation. Secondly,
we observed that the RNN has the greatest issues to dis-
tinguish the classes when sepsis onset occurs early in the
record (see sec. 2.1.3 for details). Therefore, we decided
that a machine learning algorithm stacked onto the RNN
potentially improves the classification performance. This
is because on the one hand it reconsiders short-term de-
velopments but on the other hand it also takes the long-
term developments encoded in the RNN’s output into ac-
count. Additionally, we reinject chosen parameters as we
expect this to further improve discovering short-term de-
velopments. We chose an LGBM as we expect it to be a
more light weight classifier, i.e. less data is necessary for
training than compared to, for example, a multilayer per-
ceptron to reach similar performance.

We used 4-fold stratified cross validation for the evalua-
tion of our model. Additionally during evaluation of each
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fold, one fourth of the training partition was again held out
for validation, resulting in 1%, % and % of the original
data for training, validation and testing, respectively.
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Figure 1: Processing pipeline of the proposed stacked
combination of classifiers.

2.1.  First model part: the recurrent neural
network (RNN)

Two classes are defined for the calculation of the util-
ity score for performance assessment: sepsis hours (class
2) and non-sepsis hours. As we expect the model to per-
form better according to a more distinct separation of the
original data, we split the non-sepsis hours into non-sepsis

hours of non-sepsis records (class 0) and non-sepsis hours
of sepsis records (class 1). Hence, we use three classes for
training the RNN.

2.1.1. Preprocessing steps for the RNN

According to the 3 defined classes, we separated each
sepsis record into the non-sepsis - if available, as some
records only contain sepsis hours - and the sepsis part. Af-
ter the occurrence of the first sepsis label, there are no more
than a maximum of 10 sepsis hours until the end of the
record. To prevent splitting the record potentially in be-
tween a pattern indicating sepsis manifestation, we shifted
the originally defined labels backwards by a maximum of
18 hours - depending on data availability - before the first
sepsis label occurred.

As we use only dynamic parameters for training the
RNN, the input consists of 34 parameters, i.e. 8 vital signs
and 26 laboratory measurements.

We perform a z-normalization for all input parameters
of the network. Missing values are imputed according to a
last observation carried forward (LOCF) strategy. Samples
containing missing values which precede the first valid
value are padded with zeros.

A sliding window with 20 hours of measurements is
shifted over the input time series, aiming at revealing pat-
terns in this multivariate signal sequence. Based on the
patterns found, the network is intended to classify the most
recent hour of this window as being one of the three de-
fined classes.

2.1.2. Setup of the RNN

Our RNN consists of 4 hidden layers. The first and sec-
ond use the gated recurrent unit architecture (GRU) [6]
with 64 and 32 units, respectively. The third and fourth
are fully connected layers with 32 and 16 units, respec-
tively. We performed a hyperparameter optimization using
the validation set for the learning rate, the number of hid-
den layers and the number of neurons. Remaining network
parameters such as batch size etc. were chosen based on
our experience from preceding work [4].

2.1.3. Analyzing the RNN output

Figure 2 shows the mean of the differences between sep-
sis records and non-sepsis records of the network’s output
for the first 60 hours for the validation data. We split the
records into 3 groups according to a threshold for the mean
of the RNN output for class 2. The smaller the differences,
the more difficult it is to differentiate between the classes.

We made two major observations. Firstly, the differ-
ences of the network output for short recorded sequences,
i.e. sepsis appears quite early in the record, is small (see
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Figure 2: Differences between sepsis and non sepsis
records of the RNN output for each class for one validation
set; See section 2.1 for the definition of class0, class1 and
class 2.

Sequence Feature

tn Parameter values = Pv

[tn—1,tn] Mean(Pv), First derivative = Fd

[t 2 t] Mean(Pv), Mean(Fd), Second
nTen derivative = Sd, Max(Pv), Min(Pv)

. Mean(Pv), Mean(Fd), Mean(Sd),
nTe Max(Pv), Min(Pv)

[tn—a,tn] Mean(Pv), Mean(Fd), Mean(Sd),

[tn—9,tn] Max(Pv), Min(Pv), Standard

[tn—14, tn] deviation(Pv)

Table 1: Handcrafted features which represent the input of
the LGBM; n denotes one hour of the record. Thus, the
interval [t,,_14,ty] represents one 15 hour window. We
extracted the features for each of the most frequent vital
signs and the RNN output.

figure 2 (b) and (c)). This seems plausible as the network
is trained on discovering patterns in longer sequences be-
cause we use windows with a length of 20 hours. Con-
versely, the network seems to find patterns to distinguish
between the classes with increasing length of the record
which results in increasing differences between sepsis and
non sepsis records. Secondly, the shape of the curves show
differences. Based on these observation, we assumed that
a classifier stacked onto the RNN output potentially leads
to a performance improvement. Such a classifier would
then be trained on the network’s output. In that case, the
output can be interpreted as high level features.

2.2. Second model part: the gradient
boosted machine (LGBM)

We used a gradient boosted machine consisting of deci-
sion trees as the base estimators. As most of the data was
already used for training the RNN, we decided to imple-
ment a light weight classifier which tends to better perform
on less data compared to, for example, an additional neural
network, e.g. a multilayer perceptron.

2.2.1. Preprocessing steps for the LGBM

We used 3 demographic parameters and derived hand-
crafted features (see table 1) from the RNN output and
chosen parameters of the last 15 hours. The parameters in-
clude the 7 most frequent available in the data set, i.e. heart
rate, oxygen saturation, temperature, systolic/mean and di-
astolic blood pressure and the respiration rate. This step
can be interpreted as a reinjection which is a known tech-
nique regarding the implementation of neural networks [7].
Overall, this results in 313 input features for the LGBM.
Non-available features were imputed by the median of that
feature’s values. Finally, the LGBM was trained using the
training and validation set together and validated on the re-
maining test set. In this training process, we used the two
original classes predefined in the data set.

2.2.2. Setup of the LGBM

We implemented the LGBM with an early stopping con-
dition which is tied to the utility score of the test set.
If there was no more improvement after 60 iterations we
stopped the training process. We used the mean of the
model output, i.e. the probabilities, for sepsis hours on
the test set as the classification threshold. We therefore ad-
justed the classes’ weights to counter the unbalanced pro-
portions of the two occurring classes. The maximum num-
ber of leaves was fixed to 25 whereas the maximum tree
depth was not fixed. We used a learning rate of 0.01. Re-
maining parameters were left as default. Within the cross
validation the LGBM used 519 iterations on average.
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Figure 3: 30 most important features for the classification
with the LGBM.

3. Results and discussion

Our stacked model achieved a utility score of 0.39 with
a standard deviation of 0.013 in the 4-fold stratified cross
validation. Additionally, we present the feature importance
extracted from the LGBM in figure 3 averaged over the 4
folds. Unfortunately, we were not able to score our model
on the held back challenge test data due to code issues in
the final stage of the challenge. This is why we can only
present cross validation results of our final model on the
publicly available data set. Our last working submission
which also represents our first entry achieved a utility score
on full test set of 0.114. Therefore, we achieved rank 60.

When analyzing the feature importance extracted from
the LGBM model, one can easily identify the value of the
features derived from the RNN output. As expected, those
features seem to be highly relevant for the final classifica-
tion into sepsis and non-sepsis hours. However, especially
the 3 demographic features seem to have the highest im-
portance for the classification.

We assume that the model performance can be further
improved by deriving features for the LGBM from more
than one RNN. Another approach that could potentially
improve the model performance is the combination of an
RNN trained on longer sequences - as presented in this
work - and a second RNN trained on shorter sequences.
From those two models, features could than be derived for
the LGBM.

4. Conclusion

In this contribution, we show that the combination of
a recurrent neural network for extracting time depen-
dent patterns related to sepsis development and a gradi-
ent boosted machine with the objective of learning from
the network’s output is a valid approach. We successfully
combined these two different machine learning approaches
and obtain remarkable results regarding sepsis onset pre-
diction on the given dataset.
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