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Abstract

To get early prediction of sepsis, we propose to extract
more time-dependent characteristics that retain the tempo-
ral evolvement information of the underlying biomedical
dynamic system, including differential, integration, time-
dependent statistics, variations and convolutions.

Considering that two categories are unbalanced in the
training set, we employed easy ensemble algorithm to get
multiple base learners. As for the base learner, we tried
three models: random forest, XGBoost and LightGBM.
By boosting the results of multiple base learners, we con-
structed our ensemble model.

Our team which name is njuedu ranked 25th in the of-
ficial test and scored 0.282 in full test set.Since the sub-
mitted model version only used training set A to train our
model, the model had a higher score of 0.401 in test set A,
and 0.278 in test set B, and only -0.207 points in test set C.

1. Introduction

Prediction is of great importance in biomedical field,
e.g. early goal-directed therapy provides significant ben-
efits with respect to outcome in patients with severe sep-
sis and septic shock[1–3]. To achieve the real-meaning
‘pre’diction, it means the model has to rely on the history
information to get a current prediction. Therefore, specific
models with memory have been developed, such as hidden
Markov model[4], long short-term memory recurrent neu-
ral networks[5–7], etc. However, memory-units also intro-
duce dynamical complexity, and might impose the model
on a risk of instability.

There have been several studies about early prediction
of sepsis. Desautels and colleagues[8] tried to use the In-
sight model for severe sepsis detection and got an AUC of
0.75. Mao and colleagues[9] validated InSight based on a
retrospective dataset from the mixed ward of the Univer-
sity of California, San Francisco (UCSF) Medical Center
(San Francisco, Calif.) to detect and predict three gold s-
tandards associated with sepsis and achieve AUC of 0.92
and 0.87 on sepsis and severe sepsis respectively.Kam and

Kim[10] used a deep learning model to create an early sep-
sis prediction system and validated its feature extraction
capabilities. The best result they got was an AUC of 0.929
using the LSTM variant. They followed the feature extrac-
tion steps of [11].

In this manuscript, we tried to extract various time-
dependent characteristics from the time series, and use
the derived features as the input of regular machine learn-
ing model like random forest, XGBoost[12] and LightGB-
M[13] etc.

2. Methods

We use random forest, XGBoost and LightGBM as pre-
diction models. However, most efforts have been paid to
the pre-processing and time-dependent characteristics ex-
traction. And all data descriptions can be found in [14].

2.1. Pre-processing

2.1.1. NAN replacement

Since we will focus on the temporal evolvement of the
biomedical indices, it is necessary to replace the NAN in
the original data with meaningful values in order to facili-
tate extraction of certain time dependent characteristics.We
can see from Figure 1 that the data is missing very badly.
We use the NAN replacement rules as the following:

if at = NAN, then

at =

{
ai i = max(Φ),Φ 6= �
µa Φ = �

(1)

in which at represents the value of characteristic a taken
at time t, µa is the arithmetic mean of characteristic a in
training set, Φ := {j|aj 6= NAN, j ∈ [max(1, t−3), t)},
and� denotes the empty set. This is also a combination of
the forward-fill and mean-fill method.

2.1.2. Feature extraction

We will treat every record as an independent sample in
the task. That means we will lose most evolvement in-
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Figure 1. Data missing ratio.

formation. For compensation, we extract extra features to
represent the temporal evolvement as much as possible.

The features include:
(1) Differential characteristics
For the original characteristic a, we derived the first or-

der differential as:

gspa,t =


at − at−sp t ∈ [sp+ 1, N ]

at − a1 t ∈ (b 2×sp
3

, spc]
NAN t ∈ [1, b 2×sp

3
c]

(2)

in whichN denotes the number of the records in a file after
NAN replacement, and the sp takes 1, 12, and 24 repre-
sents 1-hour, 12-hour, and 24-hour differential, respective-
ly.

Subsequently, the second differential is derived as:

hspa,t =


gspa,t − g

sp
a,t−sp t ∈ [sp+ 1, N ]

gspa,t − g
sp
a,1 t ∈ (b 2×sp

3
, spc]

NAN t ∈ [1, b 2×sp
3
c]

(3)

(2) Time-dependent statistic characteristics
We derived time-dependent mean, maximum, minimum

and variance as:

ma,i =

i∑
j=1

aj

i
, i ∈ [1, N ] (4)

fmaxa,i = max{a1, a2, . . . , ai} i ∈ [1, N ] (5)

fmina,i = min{a1, a2, . . . , ai} i ∈ [1, N ] (6)

V ara,i =

i∑
j=1

(aj −ma,i)2

i
, i ∈ [1, N ] (7)

(3) Variation coefficients

The basic variation coefficient formula is:

cspa,i =


√√√√ 1

sp

i∑
j=i−sp+1

(aj−µ
sp
i )2

µ
sp
i

t ∈ [sp+ 1, N ]

NAN t ∈ [1, sp)

(8)

where µspa,i =

i∑
j=i−sp+1

aj

sp . We take sp 12 to derive 12-
hour variation coefficient, and sp i to get time-dependent
variation coefficient.

Furtherly, we drive a characteristic cexa,i as an exaggerate
version of 12-hour variation coefficient:

cexa,i =

{
max{c12a,1, c12a,2, . . . , c12a,i} c12a,i ≥M12

a,i

min{c12a,1, c12a,2, . . . , c12a,i} c12a,i < M12
a,i

(9)

in which M12
a,i is the median of set {c12a,1, c12a,2, . . . , c12a,i}.

(4) Integration
We also adopt integration characteristic as:

pspa,i =


i∑

j=i−sp+1
(aj − µa) t ∈ [sp,N ]

NAN t ∈ [1, sp)

(10)

The sp can take i and 8.
(5) Kurtosis
The kurtosis can describe the steepness of the sample

data distribution relative to the normal distribution, and in-
dex Ktsa,i is defined as:

Ktsa,i =

i
i∑

j=1
(aj −ma,i)4

[
i∑

j=1
(aj −ma,i)2]2

− 3, i ∈ [1, N ] (11)

For space limit, we only introduce most important fea-
tures. After all these processing, we obtain 968 derivative
characteristics which extracted from first 34 columns in the
raw data. We replace NAN in these characteristics with
corresponding median.

2.2. Model selection and training

It has been widely accepted that ensemble learning can
achieve better performances. Therefore, we tried three
typical ensemble models, i.e. Random Forests (RF), XG-
Boost(XGB)[12] and LightGBM(LGB)[13] . No strict re-
strictions are imposed on these models, therefore, most of
our characteristics can be input, no regarding they are cat-
egorical or numerical, Gaussian or non-Gaussian, et.

In addition, considering that the sample size of two
categories of data is severely unbalanced, we employ
EasyEnsemble[15] (EE) as our down-sampling algorithm.
That is, we randomly divided the class of ‘regular’, which
accounts for the majority in the training set, into T equal
parts, and the sample size of each part is approximate to
the sample size of the ‘high risk’ class. Based on these
partitions, we trained T base learners. Then, we use bag-
ging method to ensemble the output of the T learners as
our final output.
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Algorithm 1 The EasyEnsemble algorithm.
Input: P : A set of minor class examples, N : a set of

major class examples, T : the number of subsets to be
sampled from N ,|P | < |N |

1: for each i ∈ [1, T ] do
2: Randomly sample a subset Ni ⊂ N, |Ni| = |P |;
3: Learn Hi using P and Ni, Hi is an estimator to

classify object.
4: end for
Output: An ensemble: H(x) = f(Hi(x))

2.3. Feature selection (FS)

In the training phase, we used features which combined
raw data and derived characteristics as the model input,
and those features need to be extracted in real-time when
we apply the model to actual application. That means it
will be heavily time-consuming. On the other hand, more
features confront the model higher risk of overfitting. To
alleviate the feature extraction burden as well as overfitting
risk, we examine the importance ranks of all these features,
and the most α% important features will be selected as the
input to train our model.

Algorithm 2 Feature Selection with EasyEnsemble.
Input: P : A set of minor class examples, N : a set of

major class examples, T : the number of subsets to be
sampled from N ,|P | < |N |, FS = {}: feature selec-
tion set
for each i ∈ [1, T ] do

2: Randomly sample a subset Ni ⊂ N, |Ni| = |P |;
Learn Hi using P and Ni, Hi is an estimator;

4: Record feature importance in model, and write as
FSi;

Pick out the top α% importance features of
FSi,and write as FSαi , default:α% = 60%;

6: then FS = FS ∪ FSαi ;
end for

Output: The most importance features FS.

2.4. Model Structure

In our model structure, we first preprocess the raw data
and use the EasyEnsemble[15] algorithm in combination
with the LightGBM[13] classifier as the final classification
model. In order to eliminate redundant features, we pre-
trained the classification model and used the feature im-
portance function to sort the features and pick out the top
α% important features. In the end, Bayesian optimization
is used to obtain better hyper-parameters.

3. Results
In the official test, njuedu which is our team name sub-

mitted an initial model version. We can see from the table

Figure 2. Model training process.

Figure 3. Model test process.

1 that the model obtained 0.282 U-Score[14] in full test
set, and ranked 25th in all participants. We found that the
U-Score[14] is more likely to have a higher score when the
ROC score is higher in the same test set.

Table 1. Official test scores

Test Set ROC PRC ACC F1 U-Score

A 0.798 0.097 0.835 0.136 0.401

B 0.746 0.066 0.912 0.122 0.278

C 0.716 0.047 0.765 0.039 -0.207

Full N/A N/A N/A N/A 0.282

Since in the earlier version model, we only used train-
ing set A to extract features and train our model, the per-
formance of earlier versions on training set B was real-
ly unsatisfactory and we got a intermediate training U-
Score[14] close to the official test set B results.In the later
research, we will make full use of training sets A and B.
We believe this will improve the performance of the model
on test set B.

The former version we submitted used fewer character-
istics, extracting the mean, extremum, differential charac-
teristics, variation coefficient, integration characteristics,
and other characteristics for the first 16 columns of the
original data, and no feature selection, and we got 280
columns of derived characteristics. In the latter version-
s, we created the training set TAB which we respectively
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extracted first 14000 data from the set A and the set B, us-
ing the rest of the data as validation set VAB .This method
is also called hold-out. We used the training set TAB to
minimize the performance difference on different data sets
and used the first 8 columns, 16columns and 34 columns of
the original data for feature extraction respectively. After
feature extraction of the first 8/16/34 columns of raw data,
we obtained 232/464/968 columns of derived characteris-
tics. After feature selection, the number of derived char-
acteristics was reduced to 156/312/616. The EasyEnsem-
ble[15](EE) and LightGBM[13](LGB) combined model-
s using the first 34 columns of data extraction features
and using feature selection algorithm show optimal perfor-
mance.Unfortunately, our highest score version ran time-
out and could not get the official score.We also feel con-
fused about that, because the time consumption is not a
problem in our own test.All our models will be uploaded
to github and challenge official site.

4. Conclusion

Combining time-dependent characteristics extraction
and models like RF, XGBoost and LightGBM, we can get
a not bad sepsis prediction. We believe that the tempo-
ral evolvement information can give us substantial clues to
the development of sepsis.In the follow-up study, we will
focus on solving the problem of program operation effi-
ciency.
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