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Abstract

PhysioNet Challenge 2019 aims to develop novel solu-
tions for early detection the clinical onset of sepsis. We
used training date provided and develop machine learning
classifiers to predict clinical sepsis 6 - 12 hours ahead of
the clinical onset.

Neural networks possess abilities to uncover insights
from complex datasets. We have trained an ensemble clas-
sifier with a convolutional neural network (CNN) and a
recurrent neural network (RNN) for early detection of sep-
sis. The classifiers were implemented in in Python using
Keras with Tensorflow as back-end. Both networks were
combined using bagging to achieve better performance.

The database appeared imbalanced, and the class (pos-
itive) with small number of data entries was oversampled
proportionally before training. 90 % of the augmented and
oversampled data were used for training, with 10 % for
testing. Our team ”Leicester Fox” achieved accuracy of
90.6 % , AUROC of 0.745 and AUPRC of 0.079 in the
test set A. The entry for the official phase of the Phys-
ioNet/CinC 2019 competition received a normalized utility
score of 0.237 on full data. Machine learning and neu-
ral networks approaches showed potential application for
better prediction of sepsis, using real-world database with
random missing data and imbalanced classes.

1. Introduction

Sepsis is a vital life-threatening condition caused by in-
fection and overreaction by the immune system, which
may cause critical subsequence including tissue damage,
organ failure, or death [1]. Early detection and appro-
priate antibiotic treatment of sepsis have shown to effec-
tively treat sepsis [1]. However, excessive antibiotic uses
on false positive patients can develop antibiotic resistant
bacterial strains and can waste resources. On the other
hand, each hour of delayed treatment has been shown to

increase the risk of resulting in death of by 4-8 % [2]. Ac-
curate early prediction remains an unsolved problem due
to error-ridden and incomplete electronic medical records
and the level of complexity of sepsis.

Convolutional neural networks (CNN) and Recurrent
neural networks (RNN) are increasingly applicable to
health care data providing highly accurate predictions. The
20th PhysioNet/Computing in Cardiology Challenge 2019
utilises 40 hourly-collected physiological vital signs and
laboratory test results from patients admitted to intensive
care units (ICUs). In this paper, we aim to develop and test
machine learning techniques, especially neural networks,
to predict sepsis up to 12 hours before the clinical onset.
We have successfully created a data pipeline to process and
clean data, identified important predictive features using
both CNN and RNN networks.

2. Materials and Methods

2.1. Database and imbalanced classes

Hourly physiological data of 40 variables from 40,336
patients admitted to intensive care unit (ICU) provided by
PhysioNet Challenge 2019 were used [3]. The database
appeared imbalanced, and the class (positive) with small
number of data entries was oversampled proportionally be-
fore training using python library imbalanced-learn [4].
Let χ be an imbalanced dataset with χmin and χmaj being
the subset of samples belonging to the minority and major-
ity class, respectively. The balancing ratio of the dataset χ
is defined as (eq. 1):

rχ =
|χmin|
|χmaj|

(1)

The balancing process is equivalent to resampling χ into
a new dataset χres such that rχ > rχres . Data balancing
can be performed by oversampling such that new samples
are generated in χmin to reach the balancing ratio rχres [4].
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Missing values, frequently found from laboratory data,
were replaced by 0 in CNN and -1 in RNN before process-
ing.

2.2. Training Data Labelling

For Sepsis patients, data were positively labelled 12
hours before clinical onset, aiming to achieve all possible
rewarding scores according to the scales of score awarding
from utility function.

2.3. Classification Model Training

Training and classification was implemented in Python
environment using Keras [5] running on top of TensorFlow
[6]. A CNN and RNN classifiers were trained on 90 % of
data as a training set, and the accuracy was evaluated on
10 % of data as a testing set.

2.4. Convolutional Neural Network

2.4.1. Feature selection

To remove the effect of missing data and speed up train-
ing, a subset of 11 features from the 40 variables were se-
lected based on importance ranking from training a sub-
set using random forest (Figure 1). The selected fea-
tures were: Heart rate, Pulse oximetry, Temperature, Sys-
tolic BP, Mean arterial pressure, Diastolic BP, Respiration
rate, End tidal carbon dioxide, Serum glucose, Gender and
hours since ICU admission. Hospital admission time was
not selected on purpose to achieve more generic and robust
features when dealing with different centres.

2.4.2. Architecture

Data were augmented using past information up to 5
hours before the current hour depending on data availabil-
ity and the differences of the consecutive hours were com-
puted. The resulting 11 × 11 matrix, resulting 121 vector
for each hour were fed in a CNN for training. As illustrated
in Figure 2, the CNN includes 3 convolutional layers, 2
pooling layers and a fully connected layer. Batch normal-
ization and dropout layers [7] were also added in between
to avoid over fitting.

2.5. Recurrent Neural Network

2.5.1. Data Normalisation

Data normalization was performed using overall global
maximum and minimum. The scaled feature xscaled is de-

Figure 1. Importance ranking of the 40 features.

fined as (eq. 2):

xscaled =
x− xmin

xmax − xmin
(2)

where, xmin and xmax were calculated as minimum and
maximum values from all available data.

2.5.2. Architecture

The 40 scaled features with past information up to 11
hours before the current hour (including) depending on
data availability were used as input matrix for the predic-
tion for the current hour, where no future information was
used. The resulting 12×40 matrix was fed in a Long short-
term memory (LSTM) network as input layer. Dropout
was applied to input layer aiming to act as optimised fea-
ture selection. As illustrated in Figure 2, the RNN includes
two stacked LSTM layers with 128 neurons. Dropout lay-
ers were added in between to avoid over-fitting. A dense
layer of 32 nodes was followed before the last layer.
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Figure 2. Architecture of CNN and RNN

2.6. Models Training

The last layer of both networks contains fully connected
layers with the last layer with 1 neuron suitable for the bi-
nary classification problem, where the activation function
is Sigmoid (eq. 3):

S(t) =
1

1− e−x
(3)

Both neural networks were trained for 40 epochs with
mini-batch size of 64 samples, where each epoch was shuf-
fled. The neural networks apply the Adam optimization
method with learning rate set to 0.00001 with a decay
of 0.000001. Lost function of sparse categorical cross-
entropy (eq. 4) was used with accuracy as evaluation met-
ric. The cross entropy function was the objective function
to be optimised during the model training process as fol-
lows:

L(X, r) = − 1

m

m∑
i=1

log p (R = ri|X) (4)

where x denotes to input data of the training sample, r
is the marking sequence of the training sample, m is the

Figure 3. Training Loss and Accuracy per epoch

length of the marking sequence in the training sample, and
p is the probability of the ith output flagged as ri .

2.7. Ensemble - bagging

Ensemble methods combine several classifiers to pro-
duce better predictive performance than a single decision
tree classifier. The main principle behind the ensemble
model is that a group of learners come together to form
a strong learner, thus increasing the accuracy of the model.
As illustrated in Figure 4, RNN and CNN were combined
using ensemble modelling of simple bagging averaging of
the possibilities output of both classifiers.

Figure 4. Ensemble-Bagging of two neural networks

3. Results and Discussions

A total of 1,552,210 input matrices from 40,336 patients
were used, 1,241,768 were used as training set and 310,442
used as validation. CNN and RNN were trained with the
final utility score on full data of 0.237.

As illustrated in Table 1, using a subset of the released
training data, CNN alone achieved utility score of 0.236,
while RNN achieved 0.279. The Ensemble-bagging of
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both networks achieved a better utility score (0.288) as ex-
pected.

Table 1. Evaluation of CNN RNN and Ensemble using
using a subset of the released training data

Local Remote
AUROC AUPRC Accuracy F-measure Utility Utility

CNN 0.919 0.374 0.894 0.226 0.742 0.236
RNN 0.927 0.284 0.875 0.184 0.626 0.279
Ensemble 0.964 0.383 0.927 0.294 0.786 0.288

Usually deep neural networks (CNNs and RNNs) are in-
credibly good at with images, sound, language and other
’natural’ data, while tree-boosting frameworks could have
performed better performance on given good hand-crafted
features or measurements, such as the features provided in
this Challenge. XGBoost [8] and LightGBM [9] are novel
gradient boosting frameworks that use tree based learning
algorithms, and they fit models to error terms and aver-
ages results within a generalised linear modelling frame-
work using base-learner (weak) models at each iteration.
In the current work, we have followed a similar idea of
ensemble neural networks and demonstrated the possibil-
ity of achieving comparable results with gradient boosting
methods dealing with ready features.

4. Conclusions

In this paper, we have successfully developed and de-
ployed two neural networks including a CNN and a RNN,
to be able to predict sepsis up to 12 hours before the clin-
ical onset with relative high accuracy. More detailed hy-
perparameter optimisation of both networks and combin-
ing more ensemble neural networks could provide better
performance. Bio-inspired systems such as neural net-
works approaches showed potential application for better
prediction of sepsis, using real-world database with ran-
dom missing data and imbalanced classes. With this data
processing pipeline, it is possible to process and clean data,
identified important predictive features and offer predic-
tion scores in real time, which could be very useful for
clinical practice to improve sepsis treatment and outcome.
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Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner
B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan
V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M,
Yu Y, Zheng X. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/.
Software available from tensorflow.org.

[7] Srivastava N, Hinton G, Krizhevsky A, Sutskever I,
Salakhutdinov R. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research 2014;15:1929–1958. URL http://jmlr.org/papers/
v15/srivastava14a.html.

[8] Chen T, Guestrin C. Xgboost: A scalable tree boosting sys-
tem. CoRR 2016;abs/1603.02754. URL http://arxiv.org/abs/
1603.02754.

[9] Ke G, Meng Q, Finley T, Wang T, Chen WJ, Ma W, Ye Q, Liu
TM. Lightgbm: A highly efficient gradient boosting decision
tree. In NIPS. 2017; .

Address for correspondence:

Xin Li
Department of Engineering
Department of Cardiovascular Sciences
University of Leicester, UK
xl251@le.ac.uk

Page 4


