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Abstract

As part of the PhysioNet/Computing in Cardiology
Challenge 2019, we propose a neural network called AEC-
Net to early detect sepsis based on physiological data.
AEC-Net consists of two main components: 1) an Auto
Encoder for dimension reduction and feature extraction,
and 2) a Fully Connected Neural Network (FCNN) tak-
ing the extracted features by the Auto Encoder as the in-
put and generating prediction of sepsis as output. The
losses of both the Auto Encoder and FCNN are minimized
concurrently. This concurrent optimization helps AEC-Net
to have a better generalization and the extracted features
by Auto Encoder to be more relevant to the classification
problem. Finally, we propose an ensemble method of AEC-
Net, Random Forest and Gradient Boosting Decision Trees
to achieve a better prediction.

We train our proposed models using data from 40336
patients with 40 physiological features ranging from 8 to
336 hours. Our team Infolab USC evaluated Ensemble
with the hidden full test set of the Physionet Challenge
2019, and achieved a Utility score of 0.284 and 24th place
in the challenge.

1. Introduction

Sepsis is a serious condition resulting from the presence
of harmful microorganisms in the blood potentially lead-
ing to the malfunctioning of various organs, shock, and
death. With every hour of delay treatment after the on-
set of hypo-tension, the risk of mortality from septic shock
increases by 7.6 % [1]. Therefore, an early intervention
is crucial. Since the electronic health records are widely
adopted, there exists a wealth of data to inform predictions
about when sepsis is likely to occur. However, early sep-
sis prediction is still challenging because the symptoms in
the physiological data associated with sepsis can be also
caused by many other clinical conditions. In this study, we
focus on predicting sepsis conditions 6 hours earlier than
the clinical detection using physiological data such as tem-
perature, heart rate, and FiO2. More specifically, at hour
t, the problem is to predict whether a patient will have sep-
sis at hour t+ 6 using data from the past until hour t. This
problem can be formalized as a binary classification prob-
lem of multi-dimensional time series. With the advance of
machine learning, especially deep learning, many classifi-

cation methods have been introduced such as Random For-
est (RF) [2], Gradient Boosting Decision Trees (GBDT)
[3], Deep Neural Network (DNN) [4] for structured data,
and LSTM network [5] for time series data. The traditional
machine learning algorithms (e.g., RF, GBDT and DNN)
need feature engineering which requires domain knowl-
edge. Auto Encoder, a deep neural network, was intro-
duced as an efficient method for automatic feature extrac-
tion. Therefore, in this study, we design a neural network
which consists of an Auto Encoder and a Fully Connected
Neural Network (FCNN). FCNN takes the extracted fea-
tures by the Auto Encoder as the input and outputs the class
label, healthy or has-Sepsis. Since we want the extracted
features to be relevant to the classification, we optimize
the Auto Encoder concurrently with FCNN by combining
their two losses. The contributions of our study are sum-
marized as follows:
1) We implement two machine learning classifiers: Gradi-
ent Boosting Decision Trees and Random Forest, as base-
lines.
2) We propose a deep neural network, AEC-Net, which
optimizes concurrently an Auto Encoder and a Fully Con-
nected Neural Network. We show that AEC-Net outper-
forms the baseline algorithms.
3) We propose an ensemble framework of AEC-Net, RF,
and GBDT to take advantage of all the classifiers. This en-
semble achieves higher performance than any single classi-
fier in all the metrics, i.e., AUC PRC, AU PRC, Accuracy,
F-measure and Utility [6].

The remainder of the paper is organized as follows. In
Section 2, we present a literature review. In Section 3, we
discuss data imputation and feature extraction. In Sections
4 and 5, we review our implementation of Gradient Boost-
ing Decision Trees and Random Forest, respectively. In
Section 6, we introduce our proposed deep neural network.
In Section 7, we explain our ensemble method. In Section
8, we report our experiments and the results. Finally, in
Section 9, we conclude the paper.

2. Literature Review

To detect sepsis, researchers have introduced several
scoring systems such as SIRS [7], MEWS [8], SOFA [9],
and QSOFA [10]. They are based on some criteria on phys-
iological data such as heart rate is higher than 90 beats/min
and body temperature is higher than 38oC degree. Re-
cently, several machine learning models such as InSight
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[11], SVM [12], and Deep Neural Network [13], are used
in early prediction of sepsis, and they are shown to be bet-
ter than the traditional scoring systems. All of the previous
studies try to predict sepsis 0-4 hours earlier than the clin-
ical detection.

3. Data Imputation and Feature Extrac-
tion

In this study, we use the data from the Physionet 2019
Challenge [6] with the patients’ records of 40 features in
multiple hours. The percentage of missing values for each
column is reported in Table 1. We replace the missing val-
ues in each column with the mean value of that column for
the entire dataset. After imputing missing values, we use

Missing Value Percentage >25% >50% >75%
Number of Columns 31 28 27

Table 1. Data Missing Percentage

the data at hour t− 5 to t to classify the data at hour t. We
will observe the groundtruth at time t+ 6. Since there are
40 features, for the AEC-Net, the input format is (6, 40).
And for GBDT, Random Forest, we flatten the input data
into the format of (1, 240).

Number of Patients without Sepsis 37404
Number of Patients with Sepsis 2932

Total number of Patients 40336

Table 2. Patient data statistics

Table 2 depicts the number of patients with and without
sepsis in the dataset. This illustrates the imbalance in the
dataset. To resolve the problem of class imbalance, we use
all data with sepsis and only 5% of data without sepsis for
training.

4. Gradient Boosting Decision Trees

Gradient Boosting Decision Trees (GBDT) [3] is a
method of converting weak learners (decision trees) into
strong learners. Starting from a decision tree, this method
subsequently adds new decision trees to have a stronger
classifier. Specifically, a decision tree outputs real values
for splitting at the internal nodes of the tree and their out-
puts can be added together. This allows for adding sub-
sequent decision trees based on the residuals of the pre-
dictions of the current trees. When adding a new decision
tree, GBDT performs the gradient descent procedure on its
parameters to reduce the total loss.

5. Random Forest

Random Forest (RF) [2] is a model made up of several
decision trees. This method averages the predictions of a
number of decision trees. During the training phase, each
decision tree is built with a random subset of features. The
number of features considered in each subset of features is

a tunable parameter. Besides, there are several other pa-
rameters which are tunable, such as the number of estima-
tors and the maximum depth of tree.

6. Deep Neural Network - AEC-Net

In this section, we present our proposed deep neural net-
work, AEC-Net. The structure of AEC-Net is depicted in
Figure 1. Instead of classifying data in the original space
X, we propose to first transform data with a non-linear
mapping fθ : X → Z where θ is a list of learnable pa-
rameters and Z is the latent feature space. The dimen-
sions of Z is typically much smaller than X in order to
avoid “the curse of dimensionality” [14]. To parameterize
fθ, Deep Neural Network (DNN) is a natural choice due
to its theoretical function approximation property [15] and
its demonstrated feature learning capability [16]. Follow-
ing this approach, our proposed network consists of two
main components, i.e., an LSTM Auto Encoder [17] and a
Fully Connected Neural Network (FCNN). Auto Encoder,
a deep neural network, which has been shown to be ef-
ficient in representation learning, is used to extract latent
compact features from the input data. The LSTM Auto
Encoder consists of an encoder and a decoder. The en-
coder contains three LSTM layers with 128, 64, and 64
cells, respectively. LSTM 1 is used to capture the temporal
dependency in the data. The decoder also contains three
LSTM layers with 64, 64, and 128 cells, respectively. The
decoder reconstructs the input data from the encoded data
by minimizing the mean square error loss:

L1 =
1

n

n∑
i=1

(xi − x̂i)
2 (1)

where n is the number of training data and xi and x̂i

are the input data and the reconstructed data, respectively.
The output of the last layer of the encoder is used as ex-
tracted features. FCNN takes the features extracted by the
LSTM Auto Encoder as its input and output the class label,
healthy or has-Sepsis. Our FCNN consists of 5 fully con-
nected layers with 32, 24, 16, 8 and 2 units, respectively.
Before each fully connected layer, we apply a Dropout
layer with the dropout rate of 0.3 for reducing over-fitting.
FCNN is optimized by minimizing the binary cross en-
tropy loss:

L2 = −1

n

n∑
j=1

2∑
i=1

tilog(si)

= −1

n

n∑
j=1

t1log(s1)− (1− t1)log(1− s1)

(2)

where n is the number of training data, ti and si are the
ground-truth and score for class i, respectively.

These two sub-networks are optimized concurrently by
linear combination of the two losses, in order to force the

1https://keras.io/layers/recurrent/
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Figure 1. AEC-Net Structure

LSTM Auto Encoder to learn relevant features to the clas-
sification task:

L = w1 × L1 +w2 × L2 (3)

where w1,w2 are the weights measuring the importance
of the tasks and w1 +w2 = 1.

7. Classifier Ensemble

Each classifier is able to detect different cases of sep-
sis. Therefore, we propose to combine the classifiers as
an ensemble of AEC-Net, Random Forest, and Gradient
Boosting Decision Trees, to achieve a better performance
in predicting sepsis. If any classifier outputs have-sepsis,
the overall predicted label is have-sepsis, or more formally:

Ensemble(x) = AEC(x) ∨RF(x) ∨GBDT(x)
(4)

where x is the input data, AEC(x), RF(x), and
GBDT(x) are the output of AEC-Net, RF and GBDT,
respectively.

8. Experiment Results

8.1. Experimental Methodology

We randomly separated the provided training dataset
into a training and validation dataset. The training dataset
contains 27025 samples and the validation dataset contains
13311 samples. We compared the methods on the valida-
tion dataset to get intermediate results. Then we submitted
our best classifier to evaluate with the hidden test data of
the PhysioNet Challenge 2019. The detailed information
about the data can be found in [6].

8.2. Parameter Settings

For GDBT and RF, we set the number of estimators to
250. For AEC-Net, we train the model using an Adam
optimizer 2 with the learning rate of 0.001 and the batch
size of 256. The weights w1 and w2 corresponding to the

2https://keras.io/optimizers/

AEC-Net RF GBDT Ensemble
AUC ROC 0.81 0.81 0.82 0.82
Accuracy 0.86 0.93 0.91 0.9
F-measure 0.12 0.17 0.16 0.16
AU PRC 0.11 0.08 0.09 0.08

Utility 0.39 0.33 0.35 0.41

Table 3. Intermediate Results of Classifiers using Valida-
tion Data

With Decoder Without Decoder
AUC ROC 0.81 0.79
Accuracy 0.86 0.89
F-measure 0.12 0.13
AU PRC 0.11 0.08

Utility 0.39 0.36

Table 4. Intermediate Results With and Without Decoder
using Validation Data

two losses are set to 0.2 and 0.8, respectively, to give a
larger weight on the classification task.

8.3. Intermediate Results with Validation
Dataset

Classifier Comparison. We compare AUC ROC, Ac-
curacy, F-measure, AU PRC and Utility [6] of all the
methods. The intuition behind the Utility metric is to
give higher score for correct sepsis detection and higher
penalty for undetected sepsis cases. Table 8.3 shows the
AUC ROC, Accuracy, F-measure, AU PRC and Utility
with the validation data for all the classifiers. As illus-
trated in this table, AEC-Net, RF and GBDT show com-
parable AUC ROC, Accuracy, F-measure and AU PRC.
AEC-Net achieves higher Utility than RF and GBDT. En-
semble achives the highest performance in all metrics since
it detects more sepsis cases that than those of any single
classifier.
The Impact of Auto Encoder. In this section, we verify
the usefulness of Auto Encoder in finding a good represen-
tation for the input data. We compared the performance of
AEC-Net with and without the decoder. When removing
the decoder, the raw input data is passed through LSTM
layers of the Encoder and the Fully Connected Neural Net-
work. For this network, we only minimize the classifica-
tion loss. Table 4 shows the results of AEC-Net with and
without the decoder sub-network. As depicted in this ta-
ble, removing the decoder sub-network reduces the perfor-
mance of the network, e.g., by 0.3 in Utility. Without the
decoder sub-network, the network’s ability for generaliza-
tion is reduced.

8.4. Final Results with the Challenge Test
Sets

Since Ensemble offers the highest Utility, we evaluated
Ensemble with the full hidden test dataset provided by the
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Physionet Challenge 2019. We achieved a Utility of 0.284
and 24th place in the challenge. The detailed result with
each hidden test set is reported in Table 5. As reported
in this table, the Utilities with Test Set A and B are much
higher than with Test Set C. The reason is that the provided
training data is from the same hospitals with Test Set A and
B. And we can see, the results with the test sets are lower
than the results with the validation data.

Test Set A Test Set B Test Set C
AUC ROC 0.789 0.822 0.796
Accuracy 0.836 0.894 0.709
F-measure 0.131 0.125 0.039
AU PRC 0.093 0.101 0.056

Utility 0.378 0.347 -0.262

Table 5. Final Results of Ensemble with Challenge Test
Sets

9. Conclusions

In this paper, we proposed a deep neural network AEC-
Net which optimizes an LSTM Auto Encoder and a Fully
Connected Neural Network concurrently. Our experimen-
tal results with real-world datasets showed that AEC-Net
outperforms the two baselines RF and GBDT in terms of
Utility. We also proposed an ensemble method consisting
of AEC-Net, RF, GBDT and our results showed that it out-
performs any single classifier in all the metrics.
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