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Abstract 

Defective sleep arousal can contribute to significant 

sleep-related injuries and affect the quality of life. 

Investigating the arousal process is a challenging task as 

most of such events may be associated with subtle 

electrophysiological indications. Thus, developing an 

accurate model is an essential step toward the diagnosis 

and assessment of arousals. 

Here we introduce a novel approach for automatic 

arousal detection inspired by the states’ recurrences in 

nonlinear dynamics. We first show how the states distance 

matrices of a complex system can be reconstructed to 

decrease the effect of false neighbors. Then, we use a 

convolutional neural network for probing the correlated 

structures inside the distance matrices with the arousal 

occurrences. 

Contrary to earlier studies in the literature, the 

proposed approach focuses on the dynamic behavior of 

polysomnography recordings rather than frequency 

analysis. The proposed approach is evaluated on the 

training dataset in a 3-fold cross-validation scheme and 

achieved an average of 19.20% and 78.57% for the area 

under the precision-recall (AUPRC) and area under the 

ROC curves, respectively. The overall AUPRC on the 

unseen test dataset is 19%. 

 

 

1. Introduction 

Sleep arousals include a wide spectrum of clinical 

features ranging from the elevation of blood pressure to 

nocturnal awakenings. The indications of sleep arousals 

can be considered as an unconscious reflex to respiratory 

and non-respiratory stimuli such as ventilator obstruction 

or periodic limb movement. Thus, accurate detection of 

such events can lead to revealing the underlying causes and 

consequently to improve the treatment outcome. While 
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EEG arousals are simply defined as an abrupt shift of EEG 

frequency [1], various kinds of sleep-interfering processes 

and class imbalance problem impede robust and reliable 

automatic arousal detection. The most common methods in 

the literature on automatic arousal detection are frequency 

analysis of polysomnography (PSG) signals. Analyzing 

EEG frequency bands [2], the coherence of different 

frequency bands between EEG and ECG signals [3], and 

periodogram of EEG, EMG, and airflow pressure [4] can 

be named as examples of such methods.  

Inspired by the recurrence quantification analysis 

(RQA) [5], in this work we proposed a method to 

reconstruct the states distances for PSG signals to 

characterize the dynamical behavior of such rare arousal 

events. Although analysis of the states’ distances of a 

dynamical system is well known in deterministic chaos 

process, we use it here as a tool to investigate the 

correlation between the sleep arousals and the phase 

transitions of PSG signals.  

 It has been shown that the distance between the states 

of a nonlinear dynamical system can reveal the 

fundamental features of the system dynamic [5]. Due to the 

complex patterns of such distance matrices, quantifying 

them for discerning a distinct regime using hand-

engineered features is a challenging task. Therefore, in this 

work, we use a convolutional neural network (CNN) 

architecture to learn such critical and complex patterns 

more effectively.  

Although few studies have been used deep learning to 

study the patterns of states distances [6] [7], to the best of 

our knowledge, this is the first time that this approach is 

used for sleep arousal analysis. The main contributions of 

this paper are as follows: 1) proposing a novel approach for 

reconstructing the state distance matrix with low 

embedding dimension while reducing the effect of false 

neighbors (Section 2.1), 2) analyzing states distance 

matrices using CNN for discovering the underlying sleep 

dynamics for arousal detection (Section 2.2). 



 

 

Figure 1. The 30s EEG and EMG time series (upper row), ε-distance matrices (middle row) and CWTs (lower row). Columns a) and b) 

represent the EEGs during arousal and non-arousal events, respectively. Columns c) and d) represent the abdominal EMGs during arousal 

and non-arousal events, respectively. The time series are shown in samples (sampling frequency is 200 Hz). 

2. Materials and methods 

For this challenge, 13 various PSG signals (including 6 

EEG, 1 EOG, 3 EMG, 1 airflow, 1 SaO2, and 1 ECG 

signals) of 994 patients (in the training set) with the 

sampling frequency of 200 Hz are provided by 

Physionet/Computing in Cardiology Challenge 2018. The 

objective of this challenge is to detect the probability of 

arousal events. More information can be found in [8].  

 

2.1. States distances in phase space 

Phase space reconstruction [9] and RQA are powerful 

techniques to represent the non-stationarity in time series 

and have been used in various disciplines [10] [11] [12]. A 

point (i.e., a state vector) in the reconstructed phase space 

of the time series  𝑥(𝑛), 𝑛 = 1, 2, … , 𝑁, is defined as: 
 

 𝑋𝑖 = [𝑥(𝑖), 𝑥(𝑖 + 𝜏), 𝑥(𝑖 + 2𝜏), … , 𝑥(𝑖 + (𝑚 − 1)𝜏)]𝑇 (1) 
 

where  𝜏 and 𝑚 are the time lag and the embedding 

dimension, respectively, and 𝑖 = 1, 2, … , 𝑁 − (𝑚 − 1)𝜏. The 

global recurrences of states (i.e. distance matrix) in phase 

space are then defined as the pairwise distances between 

pairs of state vectors, 𝐷𝑖,𝑗 =  ‖𝑋𝑖 − 𝑋𝑗‖. The main 

advantage of the distance matrix 𝐷 is that, independent 

from the embedding dimension  𝑚 (even for 𝑚 ≥ 3), it 

always provides a two-dimensional representation, which 

makes it an applicable option for visualization purposes. 

Often instead of the distance matrix 𝐷, the recurrence 

plot (RP) is used. In the classical RP, the elements of the 

recurrence matrix 𝑅 are defined as 0 when the pairwise 

distances in 𝐷 are smaller than a threshold, and 1 otherwise 

(binarization): 
 

 𝑅𝑖,𝑗 = 𝐻(𝜀 − ‖𝑋𝑖 − 𝑋𝑗‖) (2) 
 

where 𝐻(∙) is the Heaviside step function and 𝜀 is the pre-

determined distance threshold. However, this approach is 

correct only if the time series is embedded in a minimal 

sufficient dimension [13]. This means that when a proper 

dimension is used the topological structure of the 

reconstructed attractor is similar to the original phase 

space. If this condition is not met, then a state might be 

projected into a neighborhood, which it is not located in 

the original phase space (false neighbor). Therefore, for a 

valid representation of the states’ recurrences, the 

embedding dimension should be chosen by caution. In 

addition, the binarization process loses a large amount of 

information, which could be crucial for accurate 

processing of dynamical systems.  

Due to the aforementioned limitations of the RP, in this 

study, we use the pairwise distances with some 

modification. Moreover, due to the high computational 

complexity, we choose 𝑚 =  2. However, as discussed 

earlier such low embedding dimension makes the phase 

space reconstruction to be prone to the false nearest 

neighbor effect. Thus, we apply a threshold, to consider the 

small distance values to be zero so we can capture only the 

main structure in the distance matrix. To do so, 𝐸𝑖,𝑗 element 

of 𝜀-distance matrix 𝐸 is defined as follows:  
 

 



Table 1. The proposed CNN architecture. K, F, P, S denote the 

Kernel size, number of Kernels (filters), size of Pool, and Stride, 

respectively.  

Layer Parameters 

Convolution K 5×5, F16 

MaxPooling P 2×2, S 2×2 

Convolution K 5×5, F32 

MaxPooling P 2×2, S 2×2 

Convolution K 5×5, F64 

Convolution K 5×5, F128 

FullyConnected Neuron 100 

FullyConnected Neuron 100 

Softmax       - 

 

𝐸𝑖,𝑗 = (1 − 𝑅𝑖,𝑗) ∙ ‖𝑋𝑖 − 𝑋𝑗‖ (3) 
 

where the distance threshold 𝜀 is implicitly absorbed into 

this equation by 𝑅𝑖,𝑗 defined in Eq. (2). It is worth pointing 

out that 𝜀-distance matrix 𝐸 has opposite and richer 

information than the recurrence matrix 𝑅 in the sense that 

when the pairwise distance values are small the 

corresponding numbers in 𝐸 are 0, and when they are 

larger than the threshold  𝜀, the distance values are used 

directly. In Figure 1, four examples of 𝜀-distance matrices 

of arousal and non-arousal events are illustrated for EEG 

and EMG signals. 

 

2.2. Analysis of 𝜺-distance matrices using 

CNN 

The properties of distance matrices are hard to grasp. 

The conventional solution to quantify the patterns of states 

distances is extracting common features in this domain, 

such as recurrence rate, determinism, entropy, and 

laminarity [14]. In this work instead of using hand-

engineered features, we used CNN to automatically learn 

the small-scale structure in the 𝜀-distance matrices. 

The proposed CNN architecture is shown in Table 1, in 

which four convolution layers are followed by two fully 

connected layers. The extracted 𝜀-distance matrices (as 

discussed in Section 2.1) are fed into the CNN as input. In 

each convolution layer, the constant kernel size 5×5 and 

the rectified linear unit (ReLU) activation function are 

used.  

The stochastic gradient descent with momentum 

algorithm [15] is used to train the CNN with 256 mini-

batch size, 0.2 dropout ratio, and 0.01 learning rate. These 

hyper-parameters are tuned empirically. In addition, due to 

the high imbalances between the arousal (the rare class) 

and non-arousal events, we balanced the data by 

bootstrapping (i.e., random sampling with replacement of 

arousal class).   

 

3. Results and discussion 

In this work, only the three channels of C3-M2 (EEG),  

Table 2. The proposed classification results (using the 𝜀-distance 

and CWT methods) on the training set in 3-fold cross-validation. 

𝐴𝑈𝑃𝑅𝐶𝐺 and 𝐴𝑈𝑅𝑂𝐶𝐺 are the area under the precision-recall and 

the area under the ROC curves, respectively. 
 

 Different CNN Inputs 

Folds 
𝜀-distance matrices CWT 

𝑨𝑼𝑷𝑹𝑪𝑮 𝑨𝑼𝑹𝑶𝑪𝑮 𝑨𝑼𝑷𝑹𝑪𝑮 𝑨𝑼𝑹𝑶𝑪𝑮 

1 18.98 78.65 6.75 50.03 

2 18.72 78.93 6.99 50.04 

3 19.91 78.14 7.41 50.03 

Average 

(std) 

19.20 

(0.62) 

78.57 

(0.40) 

7.05 

(0.33) 

50.03 

(0.0058) 

Test 

Dataset 
19 - - - 

 

ABD (electromyography of abdominal movement), and 

SaO2 (oxygen saturation) are used. Each time series is 

windowed into 30 seconds with 25 seconds overlap to 

investigate the temporal evolution of the underlying 

dynamic. Then, the 𝜀-distance matrix of each time frame is 

reconstructed using 𝑚 =  2 and 𝜏 =  37 samples which is 

185 ms (as addressed in Section 2.1). Then it is normalized 

and resized into 50×50 matrix. Therefore, the input size of 

the CNN is 50×50×3. Moreover, the threshold 𝜀 is set to 

the standard deviation of each time frame. 

We use 3-fold cross-validation on the training data to 

evaluate the performance of the proposed method. In 

addition, for comparative evaluation of the 𝜀-distance 

matrix representation of the PSG data, the results are 

compared with continuous wavelet transform (CWT). The 

results are reported in Table 2 (for more information about 

the scoring system refer to [8]). As can be seen in Table 2, 

the 𝜀-distance matrix representation achieves significantly 

higher performance compared to the CWT method using 

the same CNN architecture. As a consequence, the 𝜀-

distance is chosen for final submission, which achieved 

19% 𝐴𝑈𝑃𝑅𝐶 on the unseen test dataset. 

In order to have a fair comparison between the 

performance of the 𝜀-distance and CWT methods, we use 

another CNN architecture, which is specifically designed 

for CWT application. The second CNN architecture is 

presented in Table 3. The performance of the CWT and 𝜀-

distance methods using the second CNN architecture are 

shown in Table 4. Although the architecture of this CNN 

is manually optimized for CWT application, the 𝜀-distance 

approach still has superior performance.   
 

Table 3. The second CNN architecture. 

Layer Parameters 

Convolution K 9×9, F16 

MaxPooling P 2×2, S 2×2 

Convolution K 7×7, F32 

MaxPooling P 2×2, S 2×2 

Convolution K 5×5, F64 

FullyConnected Neuron 500 

FullyConnected Neuron 500 

Softmax       - 



 
Table 4. The achieved performance using the second CNN 

architecture  

 Different CNN Inputs 

Folds 
𝜀-distance matrices CWT 

𝑨𝑼𝑷𝑹𝑪𝑮 𝑨𝑼𝑹𝑶𝑪𝑮 𝑨𝑼𝑷𝑹𝑪𝑮 𝑨𝑼𝑹𝑶𝑪𝑮 

1 18.52 79.23 16.86 78.77 

2 18.40 78.41 16.92 78.18 

3 19.33 77.90 17.20 78.06 

Average 

(std) 

18.75 

(0.50) 

78.51 

(0.67) 

16.99 

(0.18) 

78.34 

(0.38) 

 

This suggests not only 𝜀-distance method has better 

performance than CWT for both architectures, but also it 

has less sensitivity to the architecture of the CNN such as 

filter size and the number of convolutional layers. 

All the experiments are implemented in Matlab R2017a 

version. This is in accordance with the challenge 

organizers’ strategy, which consequently prevents us from 

taking advantage of the recent developments in Matlab 

R2018a and R2017b versions such as access to various 

advanced CNN architectures, availability of more pre-

trained models, and possibility to use more than 3 input 

channels. In the future, for further improvement in 

performance, different channel combinations and pre-

trained models will be explored. 
 

4. Conclusions 

In this study, we propose an approach for sleep arousal 

detection using state distance analysis in phase space 

representation of PSG signals. We have investigated and 

compared the proposed approach with the continuous 

wavelet transform as an alternative two-dimensional 

representation of 1D signals. Moreover, we developed and 

evaluated two deep CNN architectures. 

The comparative evaluation results demonstrate the 

applicability and effectiveness of the proposed method for 

PSG signals. In addition, we conclude that using CNN for 

learning small-scale structures in distance matrices can 

provide versatile approaches and methods to analyze the 

nonlinear dynamics of time series effectively. 

In the future, the training process will be extended by 

adding different PSG signals and using more advanced 

CNN architectures, both of which promise potential for 

significant performance improvements.  
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