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Abstract

With a large amount of data collected from studies of
sleep quality and based on the physiological signals (PS)
that are collected, it is possible to use mechanisms that in-
telligently detect sleep disorders such as arousals (ARS).
In this detection, the triggers can be present in any of the
PS or can occur from their combinations. Thus, with the
characterization of the PS and with a considerable number
of examples, it is possible to generate a model that recog-
nizes ARS zones in new samples. In this way, by segment-
ing the signals and decomposing them into variable fre-
quency bands, thanks to the application of discrete wavelet
transform (DWT), it is possible to characterize the contri-
butions of each PS in time and frequency. The features
that are extracted give information about the contributions
in frequency and time of each PS. Then these character-
istics feed a neural network model that iteratively learns
the best non-linear function that approximates the input to
its corresponding label. Once the methodology was tested,
with less than 3% of the training data, it was possible to
reach an Area Under Precision-Recall Curve (AUPRC) of
0.261.

1. Introduction

In medicine with the increase of information that Big
Data era has brought, and thanks to the knowledge ex-
traction tools, it is possible to capture relevant informa-
tion on large amounts of data efficiently. Thus, in the con-
text of the study of sleep disorders, with different physio-
logical signals (PS) collected by sensor networks through
Polysomnography studies, it is possible to obtain informa-
tion of approximately 4-7 hours, and based on this, use
mechanisms that facilitate their analysis and help to find
related pathologies.

On the other hand, regarding sleep activity, its function
is to save energy to generate a physiological stabilization.
In a normal health condition a person can pass through
several cycles, each lasting 90-110 minutes [1]. These are
composed by two primary states known as rapid eye move-
ment (REM) and non-rapid eye movement (non-REM).

The sleep cycle starts with the non-REM state, which has 4
sub-phases through which a person begins with drowsiness
and ends at the beginning of deep sleep. During this state,
several neuronal systems are activated, while others are de-
activated so that the body enters a phase of deep sleep [2].
From phase 4, it is passed to the REM state where, para-
doxically, the nervous system goes into alert mode while
the muscles are in the state of maximum relaxation.

However, different sleep disorders do not allow recovery
to be carried out, among them, according to the Interna-
tional Classification of Sleep Disorders (ICSD) [3], those
where there are problems of drowsiness, disorders associ-
ated with medical complications, and those where occur
ARS. The last one is due to sudden changes in the activity
of brain waves. It can also be interpreted as the change in
sleep states, from a non-REM state to REM or REM state
when the subject is awake.

Thus, in this work is proposed the detection of ARS
zones, in the context of "You Snooze, You Win: the Phy-
sioNet/Computing in Cardiology Challenge 2018” [4],
based on the segmentation, extraction of features on dis-
crete wavelet transform (DWT), applied to PS, and its sub-
sequent classification, using an artificial neural network
(ANN) as a classification mechanism.

2. Materials and methods

For this challenge, there were 1893 records, with 13 PS,
see Fig 1, which included electrocardiograms (ECG), oxy-
gen saturation (Sa02), respiratory flow and various deriva-
tions of electroencephalography (EEG) and electromyog-
raphy (EOM) [4]. The goal of the Challenge was to clas-
sify ARS zones present in the PS. The following are the
methods to carry out the extraction of features and their
subsequent classification.

2.1. Segmentation

Each record contains more than 4 million samples, la-
beled with three possible classes, ’-1°, 0’ and ’1’ refer-
ring to unimportant, non-ARS and ARS class, respectively.
Only the non-ARS and ARS classes are used for clas-
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Figure 1. zoom with a window of 10000 samples over the
13 PS

sification. Initially, the PSs are segmented with a win-
dow of length N, so a record with L samples will contain
M = LmodN segments, that will serve either to train a
model or to test it on new samples, as is the case of the test
data. For training, when segmenting the PS, each sample
of the segment carries its label. A single label is defined
for the entire segment according to the majority found in
the label window.

Similarly, a pair of rules are defined to deal with the
start and end of the files, according to their distributions,
as follows:

« As indicated above, with the mod operation, the remain-
ing samples are taken directly to class "0’ due to the dis-
tribution and the assumption that the patient finishes the
analysis awake.

« First 100,000 samples of each record are discarded due
they do not present ARSs.

For this work, segments of 12.5 seconds of duration
(2500 samples) were taken. On the other hand, the data
of the non-ARS class represent 75-85% of the total of a
sample, while the ARS are between 5-11%. In order to
have balanced data, the same number of segments of the
non-ARS class, selected randomly, and ARS segments are
taken.

2.2.  Analysis using discrete wavelet trans-
form

The Wavelet transform (WT) is a spectral estimation
technique which allows decomposing a signal in linear
combinations, dilating and moving a function called a
mother wavelet, see Eq 1, where a and b are the scaling
and translation parameters, respectively. By varying these
parameters and moving the mother wavelet, its correlation
with the signal segments is calculated, as indicated by Eq
2. The usefulness of the wavelets lies in time-frequency
location, a feature that can not be reached with the Fourier
transform or the STFT[5]. In this way, the WT offers an
outstanding frequency resolution analysing long time win-
dows and the detection of abrupt changes in time when
analyzing high frequencies [5]. The application of this
type of segmentation in PS turns out to be very useful,
since it allows to extract relevant information about fre-
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Figure 2. Spectrum distribution according to number of
levels, n

quency bands that describe known events, such as sleep
states based on EEG [6], characterization of ECG [7], ex-
traction of electromyography information [8], among oth-
ers.
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On the other hand, each wavelet acts as a filter, extract-
ing the time evolution of the components of the original
signal contained in the frequency bands associated with
those determined in the wavelets, Fig 2 shows the distri-
bution of bands that would correspond to each wavelet.

These bands are defined based on quadrature mirror fil-
ters [9], where a signal is divided into two bands resulting
from the application of a low pass filter (LPF) and a high
pass filter (HPF). Then, the band corresponding to low fre-
quencies is divided sequentially generating levels, in such
a way that in each of them the HPF preserves the details of
the signal and the LPF represents the trend or coarse ap-
proximation of the signal [9]. Fig 3 presents an outline of
this.
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Figure 3. subband decomposition, i/n] is the HPF and
g[n] LPF, after each filter the signal is decimated

For this work the DWT Daubechies of order 6 was used,
decomposing the PS in 7 levels and whose sub-bands are
shown in Table 1. From this decomposition, only the co-
efficients of the details D2-D7 were used due there are no
relevant events in the 50-100Hz band.



2.3.  Feature extraction

Once the PS are segmented, and these segments have
decomposed into 6 details, next is the feature extraction.
As in [10], in order to know the time and frequency contri-
butions in each band, the following features are calculated
on the coefficients of each sub-band:

o Mean of the absolute values of the wavelets coefficients.
« Average power of the wavelet coefficients.

« Standard deviation of the coefficients.

« Ratio of the absolute mean values of adjacent sub-bands.

Thanks to this extraction of features in each PS, it was
possible to transform 32500 samples, produced from the
13 PS, to 312, these were the ones that fed the model for
training.

2.4. Artificial neural networks

The goal of artificial neural networks (ANN) is given
a set of input examples, z = [z!,...,2"]T and their la-
bels y = [y, ...,y!], for the case of classification, learn
the best non-linear function that presents the smallest error
between the classified input and its output.

Structurally, an artificial neural network (ANN) has lay-
ers, neurons, and their interconnections, as shown in Fig
4. Each layer is formed of interconnected units called neu-
rons. There are three types of layers, the input, where the
original data is entered and is where the patterns are pre-
sented, this is connected to one or more (deep neural net-
work) hidden layers and in the end these are connected to
the output layer that is responsible for transforming its in-
put to the desired output format.

The connections carry a weight that is multiplied by
the input of the layer and then it is passed through a
non-linear function. This generates an activation function
a = f(>,xi xw; + b) (see Fig 5) which maps the input
to a range of values.

The learning process of the network is carried out
through the iterative updating of the weights, starting with
random assigned values, then minimizing the error through
a cost function, which in our case will be done with cross-
entropy (see Eq 3).

Table 1. Frequency band distribution

Descomposed signal ~ Frequency band (Hz)

D1 100-200

D2 50-100

D3 25-50

D4 12.5-25

D5 6.2-12.5

D6 3.1-6.2

D7 1.6-3.1

A7 0-1.6

Hidden layer 1

Activation
function: a
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Figure 5. Single unit in a layer
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where L is the number of layers of the ANN, s/ the number
of units in the I-th layer, k the output units, A > 0 a reg-
ularization parameter and € contains all the weigths of the
ANN.

Once the output is obtained, and it is compared with the
desired one, based on the value of the cost function, the
weights of the network are updated based on the back-
propagation algorithm [2]. To carry out the classifica-
tion we used an ANN with 2 hidden layers, with 200 and
100 neurons respectively, with a learning rate Ir = le™
with Adam optimizer and using L2 regularization with
B = le=% and a dropout = 0.7, dropping 30% of the
connections in each iteration of the training.

2.5. Metrics

To measure the effectiveness of the model in the classi-
fication of the ARS and non-ARS regions, the area under



the precision-recall curve was calculated as follow:
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where Arsycq is the number of ARS samples with pre-
dicted probability (j/1000) or greater, Y T'otal 4,5 the to-
tal number of ARS samples and Y, T'otalggmples the total
number of samples with predicted probability (;j/1000) or
greater.

And the final score is measured thought the gross
AUPRC.

AUPRC =) _Pj(R; — R; 1) (©6)
J

This metric gives information about the relationship be-
tween sensitivity and positive predicted value and takes
values is in the range of O to 1.

3. Results

This work was done with Python on a MacBook Pro,
2.4 Ghz Intel Core i5, 8 GB 1333 MHz DDR3, Intel HD
Grafics 3000 512 MB.

Taking segments of 2500 samples for each PS, extract-
ing the information of 6 details in the bands of interest on
each PS, through the 4 characteristics, and trained with bal-
anced segments, 44680, of 30 records, it was possible to
obtain an AUPRC = 0.261 on the rest of the data (968)
of the training set. The highest score for the challenge was
0.6 applying deep learning algorithms.

On the other hand, to reach the capacity of the model, it
was enough to train with 3% of the available data, taking
into account the imbalance of the samples and the compu-
tational limitation.

4. Discussion

As evidenced in the Challenge, the detection of arousal
zones is not a trivial problem. Then, it is necessary to inte-
grate different mechanisms for the representation and ex-
traction of knowledge from the PS. In this way, in this work
it was possible to design a simple learning model, which
provided good performance concerning computational re-
sources, through the synthesis of information, transform-
ing segments of 32500 to its representation in 312 sam-
ples that correspond to the contributions of each segment
in several frequency bands. It is also important to consider
data augmentation techniques where artificial samples can
be generated, in order to increase the quantity in unbal-
anced classes and thus use more segments of the class with
larger samples, and be able to feed the model, in a balanced
way, with more samples.
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