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Abstract 
 

Sleep disorders are implicated in a growing number of 

health problems. In this paper, we present a signal-

processing/machine learning approach to detecting 

arousals in the multi-channel polysomnographic 

recordings of the Physionet/CinC Challenge2018 dataset. 

Our network architecture consists of two components. 

Inputs were presented to a Scattering Transform (ST) 

representation layer which fed a recurrent neural 

network for sequence learning using three layers of Long 

Short-Term Memory (LSTM). The STs were calculated for 

each signal with downsampling parameters chosen to 

give approximately 1 s time resolution, resulting in an 

eighteen-fold data reduction. The LSTM layers then 

operated at this downsampled rate. The proposed 

approach detected arousal regions on the 10% random 

sample of the hidden test set with an AUROC of 88.0% 

and an AUPRC of 42.1%. 

 

1. Introduction 

Polysomnography (PSG) is a common medical test 

mainly employed to diagnose a variety of sleep disorders 

such as sleep apnea, REM sleep behaviour disorder, 

restless leg syndrome and so on. The components of PSG 

include electromyography (EMG), electrooculography 

(EOG), electroencephalography (EEG), electrocardiology 

(ECG), oxygen saturation (SaO2) and respiratory airflow 

(AIRFLOW). Annotating the sleep stages of the PSG 

recordings is a slow demanding task usually carried out 

manually by a sleep expert. Sleep arousal interruptions 

last usually from 3 to 15 seconds and can occur 

spontaneously or as a result of sleep-disordered breathing 

or other sleep disorders. Left untreated, sleep disorders 

can increase the risk for a multiplicity of health problems, 

including heart disease. Having a tool to automatically 

annotate PSG recordings could help clinicians to quantify 

and choose appropriate treatments. 

Approaches to automatic identification of arousal 

regions from physiological recordings have used a single 

data modality such as ECG [5], EEG [1], or combinations 

(EEG, EOG and EMG [3], EEG, AIRFLOW and EOG 

[8], or ECG and SpO2 [7]). Traditionally, features are 

extracted from the time or frequency domain followed by 

a machine learning classifier.  

In this paper, we explore the use of the Scattering 

Transform (ST) for feature extraction along with deep 

Recurrent Neural Network (RNN), especially Long Short-

term Memory (LSTM) networks to predict arousal 

regions in 13 PSG recordings of the Physionet/CinC 

Challenge2018 dataset [4]. To best of our knowledge, this 

is the first study that investigates how the combination of 

these techniques is efficient on sleep arousal recognition 

using multimodal time series data. 

 ST is a non-linear mathematical operator whose 

characteristics are inspired by convolutional networks [6]. 

ST has been used successfully in many classification 

tasks, including musical genre, stationary textures and 

small digits. ST uses multiple layers of wavelet 

transforms, along with complex modulus operations and 

low-pass filter averaging. Its main objective is to provide 

a representation which is invariant to translation and 

stable to small time-warping deformations. 

The remainder of this paper is organized as follows. 

Our methodology is presented in section 2. We perform 

extensive experiments and present our results and 

evaluations in section 3. Finally, conclusions and future 

directions are outlined in section 4. 

 

2.  Methods 

Fig. 1 depicts the methodology used to detect target 

arousal regions in PSG recordings. The method consists 

of three phases: dataset preparation, classification and 

evaluation. These phases are described below: 

 

2.1.  Dataset Preparation Phase 

The PhysioNet/CinC Challenge 2018 dataset [4] was 

first partitioned such that 10% of the data was set aside as 

a Held-Out Test (HOT) set, with the other 90% was used 

for ten-fold cross-validation, each fold being partitioned 

as training (90%), validation (10%) and testing (10%).  
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Figure 1. Block diagram of the proposed methodology. 

 

2.2. Classification Phase 

The arousal detection task from the 13 channel PSG 

recordings consisted of two stages: building the base deep 

classifier and building the ensemble classifiers. 

2.2.1. Building the Base Deep Classifier 

Ten base deep classifiers (BDC) were trained, 

validated and tested separately using 10-fold cross 

validation. The BDC architecture consists of two main 

components. The proposed architecture is shown in Fig. 2 

and is outlined below. 

i) Representation Learning. This component used the ST 

algorithm to provide a multi-layer representation for an 

input raw signal X. ST translation invariance refers a 

signal and its shifted version having the same feature-

space representation, while ST stability means that a 

signal and its slightly time warped version are mapped 

closely in the same feature space. The stability is 

achieved by applying the logarithmic filter-bank to a 

stretched signal to alleviate the high frequencies. 

   The wavelet transform of X is computed to obtain the 

scattering coefficients of the first layer: |𝑋 ∗ 𝛹𝑗1,𝜆1
| ∗ 𝛷𝐽 

where j1 and λ1 denotes different scales and orientations 

[6]. In the frequency domain, Φ plays the role of a low- 

pass filter, and the Ψ are band-pass filters for higher 

frequency bands. The deleted high-frequency contents of 

the signal are recovered by using another set of wavelets: 

|𝑋 ∗ 𝛹𝑗1,𝜆1
| ∗ 𝛹𝑗2,𝜆2

. This representation is not invariant to 

translations but this can be achieved by averaging its 

amplitude:||𝑋 ∗ 𝛹𝑗1,𝜆1
| ∗ 𝛹𝑗2,𝜆2

| ∗ 𝛷𝐽. The process of 

building invariance and recovering information is 

repeated to the k-th layer of scattering network [6]. The 

outcome of the network is a scattering vector, the 

concatenation of the coefficients of all layers up to m, 

having size s= ∑ 𝑝𝑘 (
𝐽
𝑘

)𝑚
𝑘=0 , where p is the number of 

different orientations and J is the number of scales [6]. 

   The STs were calculated for each signal with an 

averaging window of 512 samples, reducing the sampling 

rate to fout=200 Hz/512=0.391 Hz (chosen to give 

approximately 1 s time resolution). The first two orders of 

the ST were retained, generating 36 coefficients per 

signal, an eighteen-fold (512/36) data reduction. 

ii) Sequence Learning. LSTM cells consists of four 

blocks: a forget gate, input gate, output gate, and the 

memory state [2], designed to overcome the gradient 

vanishing problem and learn longer term dependencies 

from input [9]. Our sequence learning component consists 

of three consecutive layers LSTMi, i ϵ {1, 2, 3} with 100 

units each, in order to increase the length of time 

dependencies; the number of units was not optimized. 

Between each layer LSTMi, there is a Batch 

Normalization (BN) layer that keeps values in-bounds 

and avoids saturation at the various processing steps. A 

dense layer was added on top of the third LSTM. Finally, 

a softmax function provided predictions. 

BDC Learning. For each recording of length N, ST was 

applied up to two levels with a quality factor Q of 1 in the 

scattering filter bank, resulting in an array of dimension 

(N * M), where N denotes the number of PSG signals (13) 

and M, the number of ST coefficients. This array 
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represents the input to LSTM1, whose long-tailed 

distribution p(Xj) was quasi-normalized for each ST 

coefficient xjk, j ϵ {1, …, M}, and k ϵ {1, …, N} by taking 

the logarithm of the scaled by its median and a constant µj 

giving the transformed coefficients 

xjk’=log1p[µj*xjk/med(Xj)]. To obtain the same 

dimensionality for each signal, all signals were zero-

padded to fixed length max_length. 
 

 
 Figure 2. BDC architecture. 

 

BDC was trained using the Root Mean Square 

Propagation (RMSprop) optimization method that 

remedies a premature drop in learning rate. The final 

network output nout is an array with the three times the 

dimension of the input fout to represent the probabilities of 

three labels: Arousal (2), Non-arousal (1) and PAD (0). In 

order to address the class imbalance between Arousal and 

Non-arousal regions, the loss function was weighted for 

targets indicating Arousal by a factor of 14 (chosen by the 

proportion of arousals in the training examples of a single 

fold) while Non-arousal and PAD targets had loss 

functions weighted by 1 and 0, respectively.   

 

2.2.2.  Building the Ensemble Classifier 

Ensemble Learning refers to the combining the 

predictions of multiple classifiers, simulating a 

“committee” of decision makers. We used the unweighted 

averaging strategy to fuse the decision of ten BDCs. The 

fusion rule is given by 𝑌 = 𝑎𝑟𝑔𝑐𝑗 ∈𝐶𝑚𝑎𝑥
1

𝑛
∑ 𝑃(𝑐𝑗|𝑀𝑖)

𝑛
𝑖=1 , 

where Y is the final predicted label and C represents the 

set of all possible labels. 

The gross area under the precision-recall curve 

(AUPRC) and the gross area under receiver operating 

characteristic curve (AUROC) were used to quantify the 

performance of the proposed classifier.  

 

3. Results and Discussions 

All the experiments were performed on a PC with 

32GB RAM and a 12 GB GPU. It took approximately 15 

hrs to train each fold classifier. We employed the ScatNet 

library [10] for the ST (in the first phase of the work) and 

the Scattering.m library [11] (for the final phase in order 

to obtain an entry that could run in the time and memory 

budget of the Challenge server), Keras/Tensorflow for 

network training and the Keras CuDNNLSTM layer for 

optimized computing of the LSTM on GPU. The hyper-

parameters of BDC were chosen experimentally and they 

are: 0.1 for learning rate with early stopping when the 

validation loss failed to improve after 50 epochs. 

max_length=13371 was set to the longest (decimated) 

sequence length from the training examples. 

Transformed PSG signals yielded from the second 

layer of the scattering network of tr03-0005 recording are 

shown in Fig. 3, demonstrating correlation between 

arousal regions and transformed PSG signals. 

  

 
Figure 3. Arousal target (bottom red plot) and ST output 

for each channel (recording tr03-0005). 

 

To estimate which were the most predictive input 

signals, we first trained classifiers using specific groups 

of inputs on a single Fold1. Table 1 shows that the All 

EMG classifier had the best single-mode AUPRC 

(19.32%) while the AIRFLOW classifier yielded the 

lowest (9.84%). Interestingly, using all EEG signals 

performed only marginally better (15.88%) than a single 

EEG signal (13.02%). Using all signals performed 

significantly better (37.54%). 

Then using all inputs, ten BDCs were generated using  
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Table 1. Fold1 performance of signal-group classifiers. 
Classifier  %AUROC  %AUPRC  Classifier %AUROC  %AUPRC  

All  87.28 37.54 F3-M2 73.66 13.02 

All EMG 76.62 19.32 ECG 63.95 10.06 

SaO2 73.94 17.01 AIRFLOW 64.30 9.84 

All EEG 77.09 15.88    

10-fold cross validation and further tested with the 

common HOT dataset. The test AUPRC ranged from 

28.10% to 36.40%, while AUROC ranged from 80.15% 

to 85.64%. Afterwards, we created ensemble classifiers 

using increasing numbers of fold classifiers (from 2-10). 

Fig. 4 shows that the HOT AUPRC increased with 

ensemble size from 36.4% to a plateau of 43.3% at size 7. 

 
Figure 4. AUPRC vs. ensemble size on the HOT dataset. 
 

Finally, to generate the challenge entry we trained ten 

classifiers new using the whole training dataset (i.e., 

without HOT). The per-fold results were similar to the 

previous experiment and on the 10% random sample of 

the hidden test dataset we achieved 88.0% and 42.1% for 

AUROC and AUPRC, respectively. 

Fig. 5 compares between the annotated arousal regions 

in an example from Fold1 test partition, tr05-1377 

recording, done manually by a sleep expert (red line) and 

automatically by our proposed arousal region detector 

(blue line). It can be seen that almost all arousal regions 

were successfully detected. 

 

4.  Conclusions 

This work demonstrates a competitive approach for 

large scale arousal regions recognition in multimodal 

PSG recordings, based on scattering networks and 

without applying any prior feature engineering. The 

proposed deep architecture was capable of following the 

abrupt transitions in sleep biophysical signals of sleep 

disorder patients with a performance that was very 

competitive with the other participants. 
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Figure 5. Automatic (blue line) vs manual annotations 

(red line) for a Fold1 test case, recording tr05-1377. 
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