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Abstract 

Obstructive sleep apnea (OSA) is a condition in which a 

person repeatedly stops breathing during sleep due to 

closure of the upper airway, leading to a cycle of sleep 

fragmentation and intermittent hypoxia (oxygen 

deficiency). Conventional methods for detecting and 

quantifying OSA are largely based on physiological 

monitoring during sleep followed by manual labeling of 

sleep stages and arousals. Here there is scope for 

computerized methodologies that can efficiently and 

objectively perform this characterization of sleep.  

As part of the CinC/Physionet 2018 challenge to 

automatically detect arousals in a large, expert-annotated 

sleep dataset, we extracted 27 spectral and time domain 

features, chosen for their physiological relevance, from the 

available training set and implemented two contrasting 

methods, Generalized Linear Model (GLM) and Random 

Forest (RF), to classify arousals and non-arousals.  

We were able to achieve non-trivial classification 

accuracy, even in an imbalanced data set with far fewer 

arousals than non-arousals. This suggests that large 

machine learning problems can still benefit from 

physiology-informed feature selection, especially in the 

biomedical space.  

 

 

1. Introduction 

1.1. Obstructive Sleep Apnea 

Obstructive sleep apnea (OSA) is a serious sleep 

disorder in which patients repeatedly stop breathing during 

deeper stages of sleep [1]. This is due to upper airway 

collapse, which leads to rapid desaturation of oxygen. The 

lack of oxygen (hypoxia) triggers the response of the 

sympathetic nervous system (“fight or flight” response), a 

natural response to stress in the body, which triggers 

recurring arousals to reopen the airway and restart 

breathing. Most arousals occur without the conscious 

awakening of the patient at all, including vocalizations, 

snores, bruxisms, and periodic leg movements. Hypopneas 

are periods of abnormally slow or shallow breathing, and 

apneas are periods of no breathing. 

While suspicion of OSA can arise from a variety of 

factors, including co-morbidities such as obesity [2], 

reported snoring or restless sleep at night or drowsiness 

during the day, or physical examination findings like 

narrowed airways, “kissing” tonsils, or abnormal 

Mallampati score, a diagnosis is usually confirmed in the 

setting of a sleep laboratory [3]. In such sleep laboratories, 

behavioral response and physiological signals are recorded 

from patients while they are asleep. Sleep experts then 

manually score different sleep stages as well as the 

presence of different types of arousals in epochs of 30 

seconds for the whole night of sleep. In this context, 

automated detection of arousals could greatly reduce the 

time and cost required to diagnose OSA, in addition to 

reducing human error and developing an objective 

diagnosis scheme.  

 

1.2. The Challenge and Related Dataset 

The current work ensued from a competition conducted 

by Computing in Cardiology (CinC), whose dataset was 

made available on the Physionet website [4]. The 

competition aimed at detecting sources of arousal (non-

apnea) during sleep using various physiological signals 

including electroencephalogram (EEG), electrooculogram 

(EOG), electromyogram (EMG), electrocardiogram 

(ECG), and blood-oxygen saturation (SpO2) that were 

each sampled at 200 Hz. This dataset consists of signals 

from 1983 subjects (994 for training and 989 for testing) 

that were recorded at Massachusetts General Hospital’s 

(MGH) sleep laboratory dedicated for the diagnosis of 

sleep disorders. The dataset was also manually annotated 

for various stages of sleep (30 seconds intervals) as well as 

the presence of arousals events (hypopneas, snores, 

vocalization, etc.) by certified sleep technicians at MGH. 

The aim of the challenge was to correctly detect/classify 

the target arousal epochs, which included all arousal types 

except for apneic and hypopneic arousals. Specifically, the 

scoring was based on how well the vectors of instantaneous 

probability of arousal predicted for each test subject was 

able to detect the non-apneic/non-hypopneic arousals. In 

this paper, however, we also focus on the detection of 
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arousals including apneic/ hypopneic and non-apneic/non-

hypopneic arousals using two classification methods, the 

Generalized Linear Model (GLM) and the Random Forest 

(RF) (Fig. 1). 

 

2. Methods & Results 

We analyze all signals, sampled at frequency, 𝑓 =
200 𝐻𝑧, with a time resolution Δ=5s since the target 

arousals themselves are often very short in duration (~2 

sec). To assign an arousal state to each Δ window (0: non-

arousal, +1: non-apneic/non-hypopneic arousal, -1: 

apneic/hypopneic arousals), we use a “majority vote” 

polling method to set the arousal state, 𝑦𝑘 , based on the 

mode of the trinary observations within the 𝑘th window of 

size Δ . Since the focus for this paper is detection of all 

arousals, the -1’s are converted to +1’s in the arousal state 

vector prior to model fitting. When missing data scenario 

is encountered at any instant in any of the signals, the 

corresponding Δ window is omitted. Physiologically 

relevant features are chosen from each modality for arousal 

detection. 

 

2.1. EEG and EOG Features 

For every window of size Δ, we extract features from 

the Multitapered Power Spectral Density (PSD) [5], 𝐹𝑗, for 

the frequency bin, 𝜔𝑗 (in Hz) with constant width 𝑊 and 

using a stationary time window = Δ, time-half-bandwidth 

product = 2, and number of tapers = 3. We perform the 

following regression, 𝑙𝑜𝑔10(𝐹) = 𝑏 − 𝑐 𝑙𝑜𝑔10(𝜔), for the 

𝑘th window of size Δ, to identify parameters, 𝑏𝑘 and 𝑐𝑘, 

that characterize the background ‘1/f’ decay [6]. Then, 

using the residuals, 𝑙𝑜𝑔10 (𝑅𝑘(𝜔𝑗  )) = 𝑙𝑜𝑔10(𝐹𝑗 ) −

(𝑏𝑘 − 𝑐𝑘𝑙𝑜𝑔10𝜔𝑗) we calculate the following parameters, 

𝛿𝑘 = 𝑊 ∑ 𝑅𝑘(𝜔𝑗  )0<𝜔𝑗≤4 , 𝜃𝑘  =

 𝑊 ∑  𝑅𝑘(𝜔𝑗  )4<𝜔𝑗≤8 ,   𝛼𝑘 = 𝑊 ∑ 𝑅𝑘(𝜔𝑗  )8<𝜔𝑗≤14 , 𝛽𝑘 =

𝑊 ∑ 𝑅𝑘(𝜔𝑗  )14<𝜔𝑗≤30   and 𝛾𝑘 = 𝑊 ∑ 𝑅𝑘(𝜔𝑗  )30<𝜔𝑗≤55 . 

Finally, for each subject, the features are rescaled as, 𝑧𝑘= 

(𝑥𝑘-𝜇)/𝜎, where 𝑥𝑘 refers to any of the 7 fields, [𝑏𝑘, 𝑐𝑘, 

𝛿𝑘, 𝜃𝑘, 𝛼𝑘 , 𝛽𝑘, 𝛾𝑘], extracted for any of the 6 EEG and 1 

EOG channels and 𝜇 and 𝜎, respectively, correspond to the 

subject-specific sample mean and standard deviation 

associated with 𝑥𝑘 . Our choice of frequency bands for EEG 

is inspired by those used for tracking sleep-stages: delta, 

theta, alpha, beta, and gamma bands [7]. Here our implicit 

assumption is that the sleep stages can be correlated to 

arousal states. For computational efficiency, we decided to 

use 1 EEG channel based on our initial exploratory data 

analysis of the features across 6 EEG channels.  

 

2.2. ECG Features 

The ECG is pre-processed by extracting R peaks using 

the Pan-Tompkins algorithm [8]. RR intervals that are too 

long (> 2 seconds) or too short (< 0.3 seconds) are 

corrected with the addition or removal of R peaks 

respectively. After the extraction of R peaks, four time-

domain ECG features are computed for each window of 

size Δ as follows: (1) mean of all RR intervals within that 

window, (2) standard deviation of all RR intervals within 

that window, (3) root mean square of the difference 

between consecutive RR intervals within that window, and 

(4) proportion of differences between consecutive RR 

intervals greater than 0.05 seconds within that window.   

Then the multitapered power spectral density is 

computed for each stationary time window = Δ, time-half-

bandwidth product = 3, and number of tapers = 5. Three 

more frequency-domain features are computed as follows: 

(5) total power between 0.04 and 0.15 Hz (low frequency), 

(6) total power between 0.15 and 0.40 Hz (high frequency), 

and (7) the ratio of low frequency to high frequency power 

within that window. All ECG features are heartrate 

variability measures, which are good indicators of 

autonomic tone. Since the autonomic nervous system is 

strongly affected during arousals (“fight-or-flight” 

response), we hypothesize that these features would be 

useful.  

2.3. EMG Features 

The dataset contained three different EMG channels: 

chin, chest, and abdomen. Chin EMG contained mainly 
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high frequency activity relating to jaw clench, while chest 

and abdomen contained much lower frequency sinusoidal 

activity correlating with the rise and fall of the chest during 

breathing. Two features are extracted for each channel as 

follows: (1) total power in each window of size Δ from 0-

100 Hz for chin and 0-5 Hz for chest and abdomen, and (2) 

difference in total power between consecutive windows for 

each channel. The multitapered spectral estimates are 

computed using time-half-bandwidth-product = 3 and 

number of tapers = 5.  

 

2.4. Classification schema 

 We set up the analysis scheme for both classification 

methods, GLM and RF, as follows. As mentioned earlier, 

we group non-target arousals (apneic and hypopneic 

arousals) with target arousals. Arousal states are down-

sampled as previously described to 5-second windows. 

With such coarse-grained arousal observations and 27 

features extracted at the same time resolution, the models 

can be learnt from a training data set. These predictive 

models can be implemented on any test case to estimate a 

vector of instantaneous probabilities of arousal. Once such 

predictions are computed for every 5 second window, they 

can be expanded to yield prediction probability vectors at 

the sampling rate (200 Hz) by simply assigning the 

prediction computed for each window to all 1000 

“samples” within the 5 second window. Feature matrices 

were also constructed including features from previous and 

following time windows (Table 1). When tested on 

datasets where arousal observations are available, metrics 

such as the area under the receiver operating curve 

(AUROC) and the area under the precision recall curve 

(AUPRC) can be computed. Such metrics are useful to 

analyze the classification abilities of the chosen methods.  

Within the training dataset provided by the competition, 

we identified 74 (out of 994) subjects as outliers in the 

feature space and discarded them from the model fitting 

and validation steps. Across the remaining 920 subjects, 

the mean proportion of arousals compared to non-arousals 

is found to be 0.201. The proportion of just target arousals 

is found to be 0.059. 

  

2.5. A naïve Generalized Linear Model 

The first method we used for classification was a GLM 

of the form 

𝐸 [𝑙𝑜𝑔 (
𝑝

1 − 𝑝
)] =  𝑎0 + ∑ 𝑎𝑝𝑥𝑝

𝑃

𝑝=1

 

to classify arousals vs. non-arousals. Here, 𝑃 denotes the 

number of features used, 𝑝 is the instantaneous probability 

of an arousal, 𝐸[ ] denotes the expectation operator and 𝑥𝑝 

indicates the 𝑝th feature. To analyze the out-of-sample 

error from GLM, we use a cross-validation scheme on 920 

subjects from the training set by partitioning it into 10 folds 

with 92 subjects in each. Each fold consisted of around 

5000-6000 data points. For every fold, we fit the GLM on 

the training data from the other 9 folds, and then apply the 

estimated model to predict the arousal probabilities for 

each subject from the held-out fold. Using these predicted 

arousal probabilities and available ground truth arousal 

data, we calculate the AUROC and AUPRC. The GLM 

training and testing are conducted using pre-defined 

MATLAB functions glmfit() and glmval(). 

 

Table 1 Both GLM and Random Forest models are trained to detect All Arousals including types +1 and -.1. AUPRC and AUROC 

metrics are calculated for two test scenarios: for predicting All Arousals and for predicting Target Arousals Only (arousals of type 

+1). The basic Random Forest and GLM were first constructed for zero lag (𝑦𝑘  assumed to depend only on features from the 𝑘-th 

window). Both frameworks were later extended to incorporate additional higher order dependence on m time windows in the past (m 

back) as well as n time windows in the future (n forward).  

Method Time Lags Target Arousals Only All Arousals 

AUROC AUPRC AUROC AUPRC 

Baseline - 0.5 0.059 0.5 0.201 

Random Forest Zero lag 0.659 0.101 0.694 0.364 

Random Forest 1 back 0.675 0.111 0.733 0.425 

Random Forest 1 back + 1 forward 0.722 0.139 0.760 0.464 

Random Forest 2 back 0.717 0.134 0.756 0.456 

Random Forest 2 back + 2 forward 0.766 0.178 0.803 0.541 

Random Forest 3 back + 3 forward 0.787 0.204 0.821 0.577 

Random Forest 4 back + 4 forward 0.807 0.227 0.838 0.609 

Random Forest 5 back + 5 forward 0.812 0.235 0.843 0.622 

Random Forest 6 back + 6 forward 0.815 0.238 0.847 0.630 

GLM Zero lag 0.586 0.076 0.601 0.263 

GLM 2 back 0.645 0.098 0.651 0.306 

GLM 2 back + 2 forward 0.661 0.101 0.664 0.321 
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2.6. Random Forest 

The second method we used for cross-validation is 

Random Forest. Like the GLM, the training data set is 

partitioned into the same 10 folds with 92 subjects in each. 

A random forest of 100 weak learners is trained on each 

fold, where each decision tree is constrained to having no 

more than seven splits. The LogitBoost algorithm is used 

to boost accuracy for all forests. The pre-defined 

MATLAB function cfitensemble() was used to train all 

forests. Then for each of the 920 subjects, predictions for 

each window are computed as the average of the 

predictions yielded by the nine forests not trained on that 

subject’s data (the other nine folds). The AUROC and 

AUPRC from both GLM and RF are compared against 

baseline in Table 1. 

 

3. Discussion & Conclusion 

There are several points worthy of note from this work. 

First, we used principled tools to extract physiologically 

relevant features from 920 subjects. With only 27 such 

features, we are able to achieve non-trivial classification 

power. This study, therefore, illustrates the potential of 

physiology driven feature selection for machine learning 

problems in biomedical signal processing.  

Secondly, we contrast two very different classification 

methodologies. GLM assumes a parametric distribution for 

the data, while RF is a fully non-parametric method that 

makes no such assumption, but relies on a deterministic 

framework for classification.  Note that neither of these 

methods is black box; in both cases, potentially valuable 

information regarding which features are important can be 

extracted post-hoc to help advance our understanding of 

the disease itself. The significantly better performance of 

RF over GLM (a popular modeling tool used to describe a 

simple function of an observed variable of interest by a 

linear combination of covariates) indicates that algorithms 

that allow for prediction estimates to be described by 

nonlinear combination of covariates might lead to better 

performance for the problem at hand.  

Third, inspired by co-participants’ in the competition 

who had observed good performance by incorporating 

history-dependence, we extended our initial model (that 

assumed the arousal probabilities to depend only on the 

features at the same instant) to incorporate additional 

dependencies on features from few time-windows in the 

immediate past and future. This extension led to significant 

improvements in the AUROC and AUPRC scores. 

Interestingly, some of our features such as the spectral 

estimates are themselves capturing the temporal 

correlation in the signals within each 5 second bin. This 

fact, together with the improvement in the accuracy 

metrics by leveraging the local temporal structure in the 

feature estimates across few multiples of 5 seconds, 

indicates that there may lie a multi-scale temporal 

correlation pattern co-occuring with arousals. Elucidating 

this pattern further in greater detail can be a promising 

direction of research.  

Another key challenge that future research can address 

is with regard to detection of target arousals, specifically, 

on principled approaches to deal with detection of rare 

events. Finally, the classification paradigms based on 

physiological relevant features presented here can also be 

extended to other biomedical signal processing problems, 

such as in sleep staging. For example, sleep stages are often 

distinguished based on their EEG spectral signatures, 

which we also use as features in this work. Thus, further 

extensions of this work could also be in sleep stage 

determination for patients with obstructive sleep apnea. 
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