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Abstract 

This work evaluates the performance of convolutional 

and recurrent neural networks on the task of detecting 

Respiratory Effort-Related Arousals (RERAs). Feature 

time-series were extracted from EEG, EOG, CHIN, 

CHEST, ABDOMINAL, AIRFLOW, SaO2, and ECG and 

normalized on a per-subject basis.   Next, multi-timescale 

windows from these time-series were associated with the 

presence or absence of RERA during the window forming 

the data for model training. More than 1 million RERA-

windows and 17 million no-arousal windows were used 

for model training, and more than 200K RERA-windows 

and 4 million no-arousal windows were used for testing 

and validation.  Google Cloud ML Engine was used to 

select model hyperparameters using the validation data. 

The model with the best hyperparameter combination 

evaluated on the test set achieved an AUC-ROC score of 

0.916 and AUC-PR score 0.573. 

 

1. Introduction 

Sleep disruption has been correlated with a wide array 

of negative repercussions on health [1]. Sleep-related 

breathing disorders are chief among the causes of 

inadequate and fragmented sleep.  These disorders 

involve complete (apnea), partial (hypopnea), or subtle 

(RERA) obstruction of the upper airways which results in 

episodic asphyxia and interruption of normal sleep [1]. 

The ability to manage sleep-related breathing disorders 

depends on the ability to detect and distinguish between 

them [2].  The American Academy of Sleep Medicine 

(AASM) provides clear guidelines for establishing 

whether respiratory disturbances are apneas or hypopneas 

[3].  However, both the subtlety and variability of RERAs 

renders defining exact criteria a challenge. 

Currently, the AASM defines a RERA to be a 

“sequence of breaths lasting at least 10 seconds 

characterized by either increasing respiratory effort or 

flattening of the inspiratory portion of the nasal pressure 

or PAP device flow waveform leading to arousal from 

sleep when the sequence of breaths does not meet criteria 

for an apnea or hypopnea event” [3].       

Given this definition, the agreement among raters for 

identifying RERA events is substantial but imperfect.  

Using non-invasively measured thoracoabdominal belt 

waveforms intra-rater and inter-rater agreement (kappa 

score) is 0.80 and 0.85 respectively.  These are lower than 

the intra-rater and inter-rater agreement of 0.91 and 0.89 

using esophageal manometry; the invasive and poorly 

tolerated gold-standard method for detecting RERAs [4]. 

The combination of imperfect RERA event scoring, 

impractical gold-standard measurements, and the time-

consuming process of expert sleep scoring [5], establishes 

the need for automated methods that aid in the annotation 

of sleep studies.  This work focuses on the development 

and evaluation of RERA event detectors that use neural 

networks to process noninvasive signals commonly 

collected in polysomnography studies.  

 

2. Dataset 

2.1 Data Description 
 

The dataset used in this work was made available 

through the PhysioNet 2018 Challenge [7].  The dataset 

consists of polysomnography recordings from 994 

subjects.  The recordings include EEG, EOG, EMG, 

EKG, and SaO2 signals sampled at 200 Hz and 

annotations supplied by certified sleep technologists. 

The majority of RERA events in the dataset (99.7%) 

have durations shorter than 2 minutes, and the mean event 

duration is 30 +/- 15 seconds.  The median of mean inter-

arrival time of RERA events aggregated per subject is 15 

min. Furthermore, RERA events are asymmetrically 

distributed across sleep stages in the dataset.  The sleep 

stages N1, N2, N3, and REM account for 24%, 59%, 

4.4%, and 12% of RERA events respectively.  

 

2.2 Train, Test, Validation Split 
 

The 994 polysomnography recordings were randomly 

split into a training set of 793 recordings, 97 test 

recordings, and 102 validation recordings.  The training 

recordings generated approximately 17 million no-arousal 

and 1 million RERA tensors; the validation and test 
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recordings had approximately 2.1 million no-arousal and 

142K RERA tensors.   

 

3. Methods 

 

3.1  Neural Network Architecture 
 

The network architectures evaluated are variations of 

the architecture illustrated in Figure 1.  All networks are 

binary classifiers determining whether an observation is 

consistent with the absence of an arousal or the presence 

of a RERA.  Therefore, the network’s response to other 

arousal types (e.g. apneas) cannot be easily predicted.  

Such arousals have stereotyped manifestations enabling 

their detection with other methodology [6].   

The networks receive a collection of tensors  𝑋𝑘𝑙 

𝑘 = 1 … 4, 𝑙 = 1 … 3 constructed from features derived 

from polysomnography signals (Section 3.2). Each tensor 

𝑋𝑘𝑙 has dimensions 𝐵 × 𝑊𝑘 × 𝐶𝑙 where 𝐵 is the batch 

size. The width of the tensor 𝑊𝑘 = 𝑇𝑘 × 𝑓𝑠, where 𝑓𝑠 is 

the sampling rate and 𝑇𝑘 is the temporal window which 

can be 𝑇1 = 30, 𝑇2 = 90, 𝑇3 = 120 or 𝑇4 = 180 seconds. 

The number of channels 𝐶𝑙 corresponds to our choice of 

feature groups: 1) all features together 𝐶1 = 20, 2) all 

features separate 𝐶2 = 1 or 3) splitting the features into 4 

groups of features 𝐶3 = 5.  

 

 
Each tensor 𝑋𝑘𝑙 in this collection is passed into a 

separate convolutional tower. A tower is composed of a 

variable number of convolutional blocks each containing: 

1) variable number of convolutional layers 2) optional 

batch-normalization layer 3) max or average pooling 4) 

L1/L2 regularization 5) optional drop-out layer.  

Let the shape of the tensors produced by tower 𝑗 be 

𝐵 × 𝑊′𝑗 × 𝐶′𝑗 where 𝐵 denotes batch size, 𝑊′𝑗 denotes 

the width and 𝐶′𝑗 denotes the number of channels of the 

output tensor. When using recurrent layers, the tower 

outputs can be fused to form a single tensor to be fed into 

a single RNN or fed into separate RNNs. The RNN stack 

can have 0 to 3 optionally bidirectional LSTM layers. The 

RNN produces an output shaped 𝐵 × 𝑊′𝑗 × 𝑅𝑗, where 

𝑅𝑗 = 𝑅, the size of the LSTM cell output (𝑅𝑗 = 𝑊′𝑗𝐶′𝑗 if 

no RNN layers are used). This tensor is then reduced to 

𝐵 × 𝑅𝑗 by taking the mean of the time axis. The outputs 

of the recurrent layers are then concatenated to form the 

tensor 𝑋𝑑𝑒𝑒𝑝 of shape  𝐵 × (∑ 𝑅𝑗𝑗 ).  

We also added some optional “wide” features. 

Specifically we tried the power spectral densities of all 

night time-series and a one-hot encoding of the most 

prevalent sleep stage in the label window. These features 

are concatenated and passed through a variable number of 

fully-connected (FC) blocks each containing: 1) fully-

connected layer 2) optional batch-normalization 3) drop-

out layer. Let the output of the final block be 𝑋𝑤𝑖𝑑𝑒 . 

Finally, the tensors 𝑋𝑑𝑒𝑒𝑝  are optionally concatenated 

with 𝑋𝑤𝑖𝑑𝑒 and then processed by a variable number of 

FC blocks before the final softmax layer. The label for 

training was the most prevalent arousal state in the central 

2, 10 or 30 seconds of the feature window. In addition, 

we added an optional task to predict the sleep stage label. 

 

3.2 Feature Time-Series 
 

Different feature time-series are extracted depending 

on the identity of the polysomnography signal. 

EEG, EOG, and Chin: The feature time-series 

extracted from these channels consisted of spectral 

energies in the delta (0.5-3 Hz), theta (3-8 Hz), alpha (8-

13 Hz), beta (13-25 Hz), and gamma bands (25-50 Hz) 

computed over a 10-second window.   

CHEST, ABOMINAL, AIRFLOW: The time-series 

extracted from these respiratory channels include breath 

rate, breath width, breath amplitude, inspiratory slope, 

expiratory slope, and inter-breath intervals.  

SaO2: The time-series derived from the pulse-oximetry 

channel was the rolling mean over a 10-second window. 

ECG: Heart rate, inter-beat intervals and R-wave 

amplitude time-series from the electrocardiogram. 

In addition, a rolling variance over a 10-second window 

was also computed for all raw and ECG derived signals. 

All the above signals were sampled at multiple sampling 

rates between 1-5 Hz. 

 

3.3 Hyperparameter Search 
 

Tuning experiments involved training more than 300 

model instances with randomly chosen hyperparameters 

and ranking them according to test set performance.  

Hyperparameters include: 1) subset of polysomnography 

signals used 2) combination of tensors used 3) usage of 

wide features 4) number of convolutional layers, blocks, 

filters and kernel sizes 5) joint or separate convolutional 

towers 6) usage of batch-normalization 7) max or average 
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pooling 8) size and number of recurrent layers 9) size and 

number of the FC layers 10) dropout, regularization, 

learning rates and weighting of positive examples. 

Certain hyperparameters such as the width of the label 

window, usage of the optional stage prediction task and 

feature time-series sampling rates were tested and 

compared using similar but separate experiments. 

 

4. Results 

4.1 Overall Results 
 

The best model achieved an AUC-ROC (Area Under 

Receiver Operating Characteristic Curve) score of 0.916, 

and AUC-PR (Area Under Precision Recall Curve) score 

of 0.573 considering all validation tensors.  For reference, 

a model that predicts the majority class has AUC-PR of 0.  

 

4.2 Hyperparameter Search  
 

The best model architecture used the input tensors 𝑋33, 

i.e 120 seconds feature windows in 4 groups, at a 

sampling rate of 5 Hz and a label definition of the central 

2 sec of the window. The feature tensors were processed 

using 4 separate towers, each with 2 convolutional 

blocks, 4 layers per block, kernel size of 3 and 64 filters 

for each layer. Batch norm was not used and max pooling 

was used. Two recurrent layers without dropout were 

used. No wide features or fully-connected layers were 

applied before the classification layer. Finally, L1 

regularization scale was 0.5, RERA examples were 

weighted twice as much as normal examples and both 

RERA and stages prediction losses were trained together. 

 

4.3 Subject-wise Results 
 

The best model’s AUC-PR score varied widely across 

validation recordings (min 0.007, max 0.92) and was 

positively correlated (pearson correlation: 0.39 p-value 

9.6e-5) with a subject’s respiratory disturbance index 

(RDI) as shown in Fig 2.   

 
Figure 1: Subject RDI vs Model AUC-PR score. 

4.3 Illustrative Examples 
 

Figure 2 illustrates the model’s detection of a RERA 

event from subject tr05-1042.  The event manifests as a 

decrease in the amplitude of the Abdominal, Chest, and 

Airflow signals and its extent is established by solid black 

line labeled “RERA”. The model’s RERA probability 

rises before the onset of the event; peaks with the 

reduction in amplitude of the respiratory channels; and 

falls before the offset of the event. 

 
Figure 2: Singular RERA event detection. 

Figure 3 below illustrates the model’s detection of a 

sequence of RERA events from subject tr09-0082.  The 

events again manifest as a decrease in the amplitude of 

the respiratory channels. Evidence of subject arousal can 

be seen in the Chin channel disturbance following the 

first RERA event.  The model’s RERA probability rises 

well above the 0.5 probability during the events and drops 

below that level between and after the events.  

 
Figure 3: RERA sequence detection 

Figure 4 shows a long RERA event from subject tr06-

0103, with a repeating pattern of varying amplitudes in 

the respiratory channels.  The model’s RERA probability 

rises above the 0.5 probability level before the event and 

is sustained throughout the event. 

 
Figure 4: Long RERA detection 
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Figure 5 illustrates the model falsely detecting a RERA 

event from subject tr13-0387.  In this example two RERA 

events (between 2625-2650 secs and 2675-2700 secs) are 

present and associated with respiratory waveform 

amplitude reductions. Then, breathing amplitude remains 

variable and reduced (2700-2750 secs). However, this is 

not associated with a RERA ground-truth label. The 

model correctly predicts the first two events but 

incorrectly rises again after the second RERA event.  

 
Figure 5: False RERA detection 

Figure 6 is a t-SNE visualization of the activations of 

1600 randomly sampled RERA and normal examples in 

the final layer before the classification layer. The orange 

dots are the RERA examples and blue are normal. While 

we see some separable clusters, a sizeable number of 

normal examples contaminate the RERA cluster 

decreasing the precision of RERA detection. 

 
Figure 6: t-SNE visualization of final activation layer 

 

5. Discussion and Conclusion 

Unlike apneas and hypopneas, RERAs are subtle and 

variable in appearance as in Figures 2-5.  This renders the 

task of automatically detecting RERAs a challenge.   

The neural network evaluated successfully combined 

multi-modal feature time-series to detect singular, 

clustered, and long RERA events (Figure 2-4). However, 

the network had poor precision on subjects with a low 

burden of sleep-disordered breathing (Figure 1).  The 

network mistook periods of reduced respiratory activity 

followed by a rebound as a RERA event (Figure 5). 

Recall that a RERA is a sequence of respiratory events 

culminating in an arousal.  This suggests that one should 

establish the presence of an arousal and then evaluate the 

respiratory disturbance.  Our hypothesis is that the neural 

network considers evidence of an arousal as a correlate of 

a RERA rather than a requirement.  Better encoding of 

the arousal contingency in the network could improve its 

precision to the level necessary for clinical deployment. 

Even the model’s strengths surface some interesting 

directions for future work. The wide features were not 

used suggesting that the RR intervals spectra and stages 

do not add more information to the model. Better 

experiment and explanatory techniques can be used to 

identify the most important and accurate features for 

detecting respiratory disturbance during sleep. 
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