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Abstract

Sleep arousal directly affects the quality of sleep.
PhysioNet Challenge 2018 aims to correctly identify
designated target arousal (non-apnea arousal) and
non-arousal regions from simultaneously recorded multiple
biomedical signals. Our contribution lies in a
feature extraction algorithm that extracts generic and
domain-specific features from different biomedical signals
available in the challenge provided dataset to form a
composite feature vector. 50 most significant features
are selected based on Minimum Redundancy Maximum
Relevance scores for final classification using multiple
unbiased Random Forests. The approach is designed to
produce a single label for a 20-second segment containing
all channels, followed by smoothing the label time-series
per subject.  Our algorithm yields the median Area
Under Precision-Recall Curve (AUPRC) as 0.29 on 5-fold
cross-validation on the training dataset. The same value of
AUPRC is maintained for the test dataset as well, thereby
emphasizing the stability of the proposed algorithm. This
method secured the global rank of 8 during the official
phase of the challenge.

1. Introduction

Sleep plays an essential role for a healthy life. Improper
and inadequate sleep may lead to a wide range of
possible physical, mental and psychological disorders.
Sleep occurs in five basic stages including wakefulness,
non-rapid eye movement (non-REM) (stage 1, stage 2,
stage 3) and rapid eye movement (REM). An arousal is a
type of sleep disorder which causes a shift from deep sleep
(REM) to light sleep due to some abrupt changes in the
pattern of brain wave activity. Arousals can be of different
types, namely spontaneous arousals, Respiratory Effort
Related Arousals (RERA), bruxisms, hypoventilations,
hypopneas, apneas (central, obstructive and mixed),
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vocalizations, snores, Periodic Leg Movements (PLM),
Cheyne-Stokes breathing or partial airway obstructions.
Automatic detection of sleep arousals is an important
area of research as manual annotation of hours of various
physiological signals is a tedious and time consuming job.
An arousal makes some abrupt changes in brain activities
that can be captured in the Electroencephalography
(EEG) signals. Certain arousals also cause instantaneous
variations in regular heart beat pattern of the subject.
Arousals caused due to breathing problem during sleep can
also be detected from the rapid fall in the blood oxygen
saturation level. However, a very accurate sleep arousal
detection system is an unsolved area of research till date
due to the following major reasons.

1. Lack of open access dataset,

2. Difficulty in processing multiple noisy data, and

3. Insufficient number of well-established features for the
detection of arousals.

PhysioNet Challenge 2018 encourages the participants to
develop an algorithm to classify non-RERA-non-apnea
and RERA types of arousals using a variety of
physiological signals recorded from the subjects as they
slept through the night. Our algorithm performs an
extensive analysis on 13 different physiological signals
provided by the challenge organizer, to propose a novel
feature set containing discriminating markers for the two
types of target arousal labels. A set of best 50 features are
selected based on the Minimum Redundancy Maximum
Relevance (mRMR) scores, upon which the classification
task is performed using multiple Random Forest (RF)
classifiers.

The rest of the paper is organized in the following
manner. Section 2 provides a very brief description of
the experimental dataset. A detailed description of our
methodology, including our feature set, is given in Section
3. Section 4 shows our results on the training and test
dataset. Section 5 lists the concluding remarks.
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2. Data

A detail description of the experimental dataset
provided by the PhysioNet organizer can be found in [1].
The dataset consists of the Polysomnography recordings
of a total of 1,985 subjects, a part of which is shared for
developing the algorithm. The dataset contains a total
of 13 time-series from 6 different physiological signals
including 6-channel Electroencephalography (EEG) (F3-
M2, F4-M1, C3-M2, C4-M1, O1-M2, O2-M1), single
channel Electrooculography (EOG) (from left eye with
right ear EEG, M2 as reference), 3-channel Electro-
myography (EMG) (Chin, Chest and Abdomen), single-
lead Electrocardiology (ECG), Respiratory Airflow and
Oxygen Saturation (SaO2). Excluding Sa02, all other
signals are sampled to 200 Hz and are measured in
microvolts. SaO2 is measured as a percentage. For
analytic convenience, Sa02 is resampled to 200 Hz.

3. Methodology

This section describes in detail the steps of the proposed
methodology of non-apnea sleep arousal detection.

3.1. Data Preparation

For every subject, signals from every channel is split

into segments of 20 second duration, with 10% overlap
between the consecutive segments. In case of training data,
the corresponding annotation time-series is replaced by a
single label per 20-second segment. If the entire segment
is annotated as non-arousal (nA), it is replaced by a single
nA label. On the other hand, if at least 80% duration of the
segment is annotated as target arousal (tA), it is replaced
by a single fA label. Ratio of the number of instances in
classes nA to A is around 16:1.
We have also tried labeling segments, with non-apnea
arousal throughout, as class tA’. But, in that approach, ratio
of the number of instances in classes nA to tA’ turns out to
be greater than 20:1. Thus, our approach slightly improves
the class imbalance in favor of the minority class.

3.2.  Preprocessing

All channels are filtered appropriately, according to the
requirements of the individual sensors. ECG signal is
found to contaminate EEG, EOG and Chin EMG signals
as additive noise. EOG also contaminates the frontal EEG
channels similarly. To deal with this, adaptive Recursive
Least Squares (RLS) filtering technique [2] is used to first
remove ECG from EOG and Chin EMG, then remove both
ECG and decontaminated EOG from EEG. Figure 1 shows
a representative outcome of preprocessing on EEG.
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Figure 1. EEG waveform recorded from F4-M1, before
(F'4yqw) and after (F'4,,,.) adaptive RLS filtering is
employed to remove ECG and EOG contamination

3.3. Feature Extraction

Discovering features capable of distinguishing the
concerned classes is the most important part of any
conventional approach of handling classification problems.
In the proposed method, all 13 physiological signals
of the given polysomnographic recordings are used to
extract features which may correlate to the target-arousal/
non-arousal labels. The considered features can be
classified broadly into two categories, as follows.

3.3.1. Domain/Sensor Independent Generic
Features

A set of 392 generic features is derived from each
signal resulting in a total of (13*392=) 5096 features.
These features include various statistical properties (e.g.
mean, variance, skewness, kurtosis, Box-Pierce statistics,
Hurst exponent) of the time domain signal, its Fast
Fourier Transform (FFT) coefficients and Discrete Wavelet
Transform (DWT) coefficients. Other spectral features like
centroid, roll off, flux and different entropy measures (e.g.
Shannon, Renyi, Tsallis) are also considered.

3.3.2. Domain/Sensor Specific Features

A total of 1044 features spread across the 13 signals
are computed. These comprise asymmetry features
from 5 standard frequency bands (e.g. delta, theta,
alpha, beta and gamma) of the 6 EEG channels,
morphological and heart rate variability features from
ECG [3], visibility graph based features from ECG,
EEG and Cardio-Respiratory Interaction (CRI) time-series
[4, 5], breathing rate variability features from Chest,
Abdomen EMG and Airflow [6]. Morphologies of
the breathing cycles, breath-by-breath correlation, phase
relation between Chest and Abdomen EMG are also
explored [7, 8].
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Figure 2. 5-fold performance (AUPRC) evaluation for
an increasing feature set, ranked using mRMR technique,
over all training subjects

3.4. Feature Selection

Feature selection helps in discarding the irrelevant
and redundant features, thereby lowering both bias and
variance of the proposed algorithm. All the extracted
features are ranked using the mRMR technique [9] to find
the most effective one. Figure 2 shows the variation of
AUPRC over 5-folds of cross-validation with the increase
in the number of selected features. The cross-validation
partition is done in such a manner that recordings from the
same subject never belong to both train and test folds.

It can be seen from Figure 2 that the best bias-variance
value pair is obtained while using the top 50 features.
With this many number of features, any test data would
need approximately 5 x 10'2 CPU instructions at most for
complete execution, which is well within the prescribed
quota of the challenge.

Figure 3 shows the strengths of the top 50 features selected.
Among these, 34% features (including the best one) come
from the domain/sensor specific category. The distribution
of the selected features over the different physiological
signals is depicted in Table 1. It shows that Chin EMG,
Abdomen EMG, Airflow and SaO2 are the most important
indicators of non-apnea arousal.

3.5.  Fusion of Multiple Trained RF Models

We choose RF models as our classifiers. However,
training a single classifier model using the unbalanced
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Table 1. Distribution of top 50 features across sensors and
across generic and domain/sensor specific varieties

Physiological Generic | Sensor-speci- | Total
Signal Features | fic Features
Selected Selected
F3-M2 2 - 2
F4-M1 1 1 2
C3-M2 1 - 1
EEG C4-M1 2 - 2
01-M2 1 - 1
02-M1 - 1 1
EOG 3 - 3
Chin 4 2 6
EMG | Abdomen 5 3 8
Chest 2 2 4
Airflow 6 - 6
Sa02 6 1 7
ECG - 5 5
Multi-signal - 2 2
Total 33 17 50

data leads to most tested instances being classified into
the majority class, nA. On the other hand, dropping major
class instances in order to train the model on balanced
data produces a more balanced outcome. But this means
that only 1/16'" of the major class is used in training.
To have the best of both worlds, we decide to take an
approach using multiple trained models. 10 RF classifiers
are trained. All the minority class in training, i.e. instances
labeled A, are fed to every classifier. The majority class,
nA, is balanced per classifier and is mutually exclusive with
the nA instances used to train any other classifier. Thus,
both a balanced training and a greater coverage of majority
class are ensured. While labeling a test instance, the mean
of the output probabilities of belonging to target class
tA, of all 10 models, is considered as the final posterior
probability. The advantage of using multiple fair models,
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Figure 4.  Variation in 5-fold AUPRC when different
number of fair trained models are used and their mean
probability (of belonging to target class rA) taken as output
for a tested instance
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Figure 5. Variation in 5-fold AUPRC with and without
smoothing of the predicted label time-series

over a single such model, is demonstrated in Figure 4.

3.6. Prediction Stitching and Smoothing

Using the above method, each 20-second test instance
receives a single output label. The same is expanded
to a label time-series at 200 Hz, at par with the
annotation time-series provided. = The 10% overlap
between consecutive signal segments is handled and is
expected to avoid sharp transitions between segments. The
label time-series is further smoothened using a 5-second
moving average filter. Performance gain from smoothing
is shown in Figure 5.

4. Results

The performance of the proposed approach during
5-fold cross-validation over the training dataset provided
by the challenge organizer is detailed in Table 2. It should
be noted that, the gross AUPRC for all tested subjects
first peaks for small number of subjects and then with
increase in the number of subjects the AUPRC comes
down and asymptotically reaches the final value. For
example, in case of the first fold, the AUPRC peaks to
0.45 for around 20 subjects, comes down to 0.30 for 100
subjects and asymptotically approaches 0.29 as subjects
increase. The AUPRC obtained on the hidden test dataset
is 0.29, which is identical to the median AUPRC of train
set cross-validation. Since there is no drop in performance
from train to test dataset, it can be said that the proposed
algorithm is robust for the concerned arousal detection
problem.

5. Conclusion

In this paper we propose an algorithm of detection of
arousals from various physiological data collected during

Table 2. AUPRC of 5-folds in training set cross-validation

Fold1 Fold2 Fold3 Fold4 Fold5
AUPRC  0.29 0.29 0.28 0.31 0.29

sleep.  Several statistical and morphological features
have been considered to derive a novel feature set for
designing a robust sleep arousal classification system. The
said algorithm yields median AUPRC of 0.29 on 5-fold
cross-validation on the training dataset shared during the
PhysioNet Challenge 2018. The same performance of 0.29
is maintained in case of the hidden test dataset. Our future
work would involve proposing a hybrid classification
system, by adding machine generated features (deep
learning based approach) to the existing feature set. The
source code is available in public under GPL license.

References

[1] Ghassemi MM, Moody BE, Lehman LH, Song C, Li Q,
Sun H, Mark RG, Westover MB, Clifford GD. You snooze,
you win: the PhysioNet/Computing in Cardiology Challenge
2018. In Computing in Cardiology, volume 45. Maastricht,
Netherlands, 2018; 1-4.

[2] Lu G, Brittain JS, Holland P, Yianni J, Green AL, Stein JF,
Aziz TZ, Wang S. Removing ECG noise from surface EMG
signals using adaptive filtering. Neuroscience Letters 2009;
462(1):14-19.

[3] Datta S, Puri C, Mukherjee A, Banerjee R, Choudhury AD,
Singh R, Ukil A, Bandyopadhyay S, Pal A, Khandelwal S.
Identifying Normal, AF and other abnormal ECG rhythms
using a cascaded binary classifier. Computing 2017;44:1.

[4] Long X. On the analysis and classification of sleep stages
from cardiorespiratory activity. Sleep Wake 2015;1-232.

[5] Diykh M, Li Y. Complex networks approach for EEG signal
sleep stages classification. Expert Systems with Applications
2016;63:241-248.

[6] Prabha A, Trivedi A, Kumar AA, Kumar CS. Automated
system for obstructive sleep apnea detection using heart
rate variability and respiratory rate variability. In Advances
in Computing, Communications and Informatics (ICACCI),
2017 International Conference on. IEEE, 2017; 1303-1307.

[7]1 Redmond SJ, Heneghan C. Cardiorespiratory-based
sleep staging in subjects with obstructive sleep apnea.
IEEE Transactions on Biomedical Engineering 2006;
53(3):485-496.

[8] Al-Angari HM, Sahakian AV. Automated recognition of
obstructive sleep apnea syndrome using support vector
machine classifier. ~ IEEE Transactions on Information
Technology in Biomedicine 2012;16(3):463—468.

[9] Ding C, Peng H. Minimum redundancy feature
selection from microarray gene expression data. Journal
of Bioinformatics and Computational Biology 2005;
3(02):185-205.

Address for correspondence:

Tanuka Bhattacharjee

Embedded Systems and Robotics, Tata Consultancy Services
Building 1B, Ecospace Plot - IIF/12, New Town, Rajarhat
Kolkata - 700160, India

bhattacharjee.tanuka@tcs.com

Page 4



