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Abstract

In this work, a dense recurrent convolutional neu-
ral network (DRCNN) was constructed to detect sleep
arousals using available Polysomnography (PSG) mea-
surement channels provided in the 2018 Physionet chal-
lenge database. Our model structure is composed of
multiple dense convolutional units (DCU) followed by a
bidirectional long-short term memory (LSTM) layer fol-
lowed by a softmax output layer. The sleep events in-
cluding sleep stages, arousal regions and multiple types of
apnea-hypopnea/normal are manually annotated in 2018
Physionet challenge database which enable us to train
our proposed network using a multi-task learning mech-
anism. Three binary cross-entropy loss functions cor-
responding to sleep/wake, arousal presence/absence and
apnea/hypopnea presence/absence detections are summed
up to generate our overall network loss function that is
optimized using the Adam method. Our model perfor-
mance was evaluated using two metrics: the area under
the precision-recall curve (AUPRC) and the area under
the receiver operating characteristic curve (AUROC). To
measure our model generalization, 4-fold cross-validation
was also performed. For training, full night recording data
was applied to our model. Finally, our proposed algorithm
achieves the first place in the official stage of the Physionet
challenge with AUPRC of 0.54 on the blind testing dataset.

1. Introduction

Arousal is an abrupt change in the pattern of brain wave
activity leading to a shift from deep sleep, which is com-
monly known as rapid eye movement (REM) sleep, to
light sleep (NREM), or from sleep to wakefulness. It
can become an issue if it happens constantly during sleep.
According to the American Academy of Sleep Medicine
(AASM) guidelines, arousal is an abrupt shift within Elec-
troencephalogram (EEG) signal frequency bands including
alpha, theta and greater than 16 Hz which lasts at least 3
seconds and is preceded with at least 10 seconds of sta-
ble condition. During REM stage, the arousal may also
appear with an increase in chin Electromyogram (EMG)

signal [1, 2].
The arousal has various causes such as sponta-

neous arousal, respiratory effort related arousal (RERA),
bruxisms, hypo-ventilation, hypopneas, apneas (central,
obstructive and mixed), vocalizations, snores, periodic leg
movement, Cheyne-Stokes breathing or partial airway ob-
struction. Normally, RERA is the most common type of
non-apnea and non-hypopnea arousal. Polysomnography
(PSG) is an essential and standard method to investigate
the sleep quality, and to detect any respiratory or non-
respiratory related sleep disorders through measuring mul-
tiple physiological signals when the subject is asleep [3].

Recently, convolutional neural networks (CNN) have
gained a lot of interest in physiological signal processing
due to their strong capabilities in learning complex fea-
tures by being directly applied on raw data without extract-
ing any hand-crafted features [4, 5]. In this work, a dense
recurrent convolutional neural network is proposed to de-
tect arousal regions using PSG data provided in the 2018
Physionet challenge. Our network is a modified DenseNet
that is proposed in [6] and is composed of multiple dense
convolutional units (DCU), where each is a sequence of
convolutional layers that are all connected to provide max-
imum information flow. It ends with a bidirectional long-
short term memory layer (LSTM) with a residual skip con-
nection and extra convolutions to convert the LSTM hid-
den states from forward and backward passes to the output
shape. To compute the probability of arousal at each sam-
ple during training process as well as computing losses,
a remapping mechanism is also proposed to simplify the
network decision making process. Moreover, other task
labels such as apnea-hypopnea/normal and sleep/wake are
used as auxiliary tasks in a multi-task learning framework
to share representations between related tasks and to im-
prove our model generalization on our desired task which
is the arousal detection.

2. Materials and Pre-Processing

The dataset includes PSG data from 1,985 subjects
which were monitored at the MGH sleep laboratory for
the diagnosis of sleep disorders. The data were partitioned
into balanced training (n = 994), and test sets (n = 989),
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where the training data are provided publicly to design a
model to detect target arousal regions. It includes multiple
physiological signals that are all sampled at 200 Hz and
are manually scored by certified sleep technicians at MGH
sleep laboratory according to the AASM guidelines. More
details regarding the dataset and available annotations for
different sleep analysis purposes are provided in [7].

In this work, the PSG measurements (12 channels) are
used to design an arousal detector model. The electrocar-
diogram (ECG) signal which is not necessary for sleep
scoring is excluded from our analysis. First, an anti-
aliasing finite impulse response (FIR) filter is applied to
all channels. Then, the channels are down-sampled to 50
Hz and are normalized by removing the mean and the root-
mean-square (RMS) of signals in a moving 18-minute win-
dow, using fast Fourier transform (FFT) convolution. Ac-
cording to the AASM guidelines, the baseline breathing is
established in 2 minutes. Normalizing over 18-minute in-
terval ensures 90% overlap between the two ends of the
baseline window. Our proposed normalization process is
not applied to the oxygen saturation (SaO2) measurement
that is only scaled to be limited in (−0.5, 0.5) to avoid sat-
urating the neural network with large values.

3. Arousal Detector Model

In this section, the DRCNN structure that is proposed
to detect arousal regions is explained. Then, the multi-
task learning framework is described in which all available
annotations associated with the sleep/wake, arousal and
apnea-hypopnea/normal events are employed to improve
our network generalization.

3.1. DRCNN Network Structure

In this work, our proposed DRCNN is trained and eval-
uated using data down-sampled to 50 Hz to decrease com-
putational effort and to fit a full night recording into mem-
ory to be applied to the network. The network is com-
posed of multiple blocks, DCU1, DCU2 and LSTM which
are displayed in Figure 1. First, there are three DCU1s,
each followed by a max-pooling layer to down-sample in-
put signals to one entity per second. This is followed
by eleven DCU2s. The DCU1s and DCU2s have similar
structure comprising two sequences of two depthwise sep-
arable convolutional layers followed by the scaled expo-
nential linear unit (SELU) activation functions.

In DCU2, weight normalization, channel-wise normal-
ization and stochastic batch normalization [8] with a chan-
nel specific affine transform are also applied on convolu-
tional layer outputs before using SELU activation func-
tion. Channel-wise normalization involves subtracting the
mean and dividing by the standard deviation across the
channel dimension independently for each time step. To
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Figure 1. (a) DCU1, with no channel-wise normalization,
(b) DCU2, with channel-wise normalization and (c) LSTM
block, where x and y are the dimensions of input and out-
put channels of DCUs.

extend the DCU2 receptive field, dilated convolutions are
also deployed, where the dilation rates are first increased
exponentially with the depth of the network along the first
six DCU2s, and then are exponentially decreased along
the remaining ones [9]. However, in DCU1, neither a
channel-wise normalization nor a dilation factor is applied.
Stochastic batch normalization is used in both DCU1 and
DCU2.

Following the DCUs, a bidirectional long short-term
memory (LSTM) layer with a residual skip connection
(linear 1 × 1 convolution) is also applied across the input
channel temporal dimension. Finally, two more convolu-
tional layers with 1 × 1 mapping are used to convert the
LSTM hidden states from forward and backward passes to
the output shape. The hyperbolic tangent (tanh) is also ap-
plied before the last convolutional layer. The overall struc-
ture of our proposed DRCNN is displayed in Figure 2.

3.2. Learning Mechanism

In this work, a multi-task learning mechanism is used to
improve the generalization of our proposed arousal detec-
tor model and to learn more complex features through us-
ing other correlated tasks such as apnea-hypopnea/normal
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Figure 2. Proposed DRCNN architecture, including DCU1, DCU2 and LSTM block, where input and output channel
dimensions are given in parentheses.

and sleep/wake. The ground truth corresponding to each
task is a three-condition vector that is defined as follows:
• Arousal presence/absence detection task: (target arousal
= 1, non-target arousal (apnea/hypopnea or wake) = -1, and
normal = 0),
• Apnea-hypopnea/normal detection task: (obstructive ap-
nea/hypopnea = 1, central/mixed apnea = -1, and normal =
0),
• Sleep/wake detection task: (sleep stages (REM,
NREM1, NREM2, NREM3) = 1, wake = 0, and undefined
stage = -1)

Considering the above three possible conditions asso-
ciated with every task, 27 combinations can be defined.
To investigate the distribution of the data associated with
all combinations, the histogram of the labelled data is ob-
tained. As it is displayed in Figure 3, only 13 combinations
out of 27 were non-empty. To simplify the structure of the
network output layer that computes joint probabilities, the
non-empty bins are remapped to 4 bins that are displayed
in green color in Figure 3. All the red bins corresponding
to the beginning of the record before annotating the first
sleep epoch (undefined sleep stage) are remapped to bin 0.
The data associated with bin 0 are still processed by our
model during training, however it does not contribute to
the loss gradient.

It is by definition impossible to get a sleep disorder
while the subject is awake (condition in bin 1 and bin 7).
This happens because according to the AASM guidelines,
the sleep stages are annotated in 30-second epochs. There-
fore, it is necessary to update sleep/wake detection task la-
bels upon reaching such a state. For this purpose, bin 1 and
bin 7 are respectively remapped to bin 2 and bin 8. Simi-
larly, bin 5 is remapped to bin 4 because when the arousal
label is -1 and no apnea or hypopnea is present, the subject
must be awake.

The last convolutional layer of our proposed DRCNN
has four output channels that are soft-maxed to compute
joint probabilities corresponding to bins 4, 8, 14 and
23. Then, the predicted arousal, apnea-hypopnea/normal
and sleep/wake marginal probabilities are computed as:
P(arousal) = P(bin 23), P(non-arousal) = P(bin 4) + P(bin

Figure 3. Bins remapping mechanism to simplify multi-
task learning process

8) + P(bin 14), P(apnea/hypopnea) = P(bin 8), P(no apnea
and hypopnea) = P(bin 4) + P(bin 14) + P(bin 23), P(wake)
= P(bin 4), and P(sleep) = P(bin 8) + P(bin 14) + P(bin 23).

To train our DRCNN, the apnea-hypopnea/normal and
sleep/wake are used as auxiliary detection tasks. The to-
tal cross-entropy loss is computed as the weighted average
of loss values corresponding to the desired and auxiliary
tasks, where the arousal loss (desired task) weight is set
to 2. The network weight parameters are optimized by us-
ing the Adam method which outperforms other optimiza-
tion techniques in this work. In every epoch, one full-night
recording is randomly selected and processed through the
network. Then, to evaluate the performance of the net-
work, the AUPRC and AUROC are obtained for validation
data and the model is checkpointed if there is any improve-
ment with any of the above scores. The full training pro-
cess is repeated four times across different folds of training
and validation data and finally the predictions of our four
models are averaged to obtain ensemble model predictions.
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Table 1. Cross-validation results, where each model is
evaluated on its own validation dataset

Performance Metrics Model 1 Model 2 Model 3 Model 4 Average
Arousal AUROC 0.922 0.922 0.913 0.921 0.919
Arousal AUPRC 0.557 0.505 0.524 0.529 0.528
Apnea-Hypopnea/Normal AUROC 0.956 0.958 0.960 0.972 0.961
Apnea-Hypopnea/Normal AUPRC 0.734 0.760 0.764 0.785 0.760
Sleep/Wake AUROC 0.959 0.958 0.961 0.937 0.953
Sleep/Wake AUPRC 0.826 0.834 0.853 0.767 0.820

Table 2. Performance on testing records using single and
ensemble model strategies

Performance Metrics Model 1 Model 2 Model 3 Model 4 Ensemble
Arousal AUROC 0.921 0.923 0.923 0.922 0.931
Arousal AUPRC 0.492 0.497 0.519 0.511 0.543
Apnea-Hypopnea/Normal AUROC 0.951 0.955 0.954 0.965 0.965
Apnea-Hypopnea/Normal AUPRC 0.721 0.745 0.761 0.781 0.783
Sleep/Wake AUROC 0.958 0.957 0.958 0.944 0.960
Sleep/Wake AUPRC 0.831 0.822 0.822 0.771 0.832

4. Results and Discussion

The proposed DRCNN is applied to 12 PSG channels,
excluding ECG signal. The network hyper-parameters and
learning procedure are explained in Section 3. The PSG
channels are first pre-processed as described in Section 2.
To train our network, the available annotated data are di-
vided into four folds, where each includes 794 training,
100 validation and 100 consistent testing records. Us-
ing a multi-task learning process, the AUPRC and AU-
ROC are obtained for sleep/wake, arousal and apnea-
hypopnea/normal detection tasks. Table 1 displays the
performance metrics measured for each fold of cross-
validation as well as the average performance on validation
records across the 4 folds.

Using four trained models on different data folds, their
corresponding predictions are averaged to form an en-
semble model prediction. The ensemble model strategy
improves the performance compared to the single model
strategy. Table 2 displays single and ensemble model per-
formance evaluation results on the consistent test set. It
must be noted that the performance results are obtained
for the up-sampled data to the original 200 Hz.

Finally, the average AUPRC and AUROC values as-
sociated with the arousal detection task were 0.505 and
0.922, respectively on our testing dataset. An ensemble of
four models trained on different data folds improved the
AUPRC and AUROC to 0.543 and 0.931, respectively.

5. Conclusion

In this paper, a modified version of the dense convolu-
tional neural network comprising multiple convolutional
and LSTM blocks is proposed to detect sleep arousal re-
gions using 12 PSG channels that are provided in the 2018
Physionet challenge database. To improve our network
generalization and to use information from other correlated

tasks such as apnea-hypopnea/normal and sleep/wake, a
multi-task learning procedure using hard parameter shar-
ing framework is also exploited in this work. Four
DCRNN models are trained and evaluated on different sub-
sets of training and validation data. Finally, an ensemble
model is obtained through computing the average predic-
tion of the above four models. The results confirm the
superiority of our ensemble model against single model
approach. On the challenge blind testing dataset, the en-
semble model achieves an AUPRC of 0.54, which is the
first-place entry in the Physionet challenge official stage.
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