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Abstract 

 
The efficient detection of respiratory effort-related 

arousals requires enormous amount of data and a 

suitable learning model. Using a dataset taken from 

PhysioNet.org, windows of 20 seconds were extracted 

with their median aligned with the starting point of 

the arousals. The same amount of data was selected 

from non-arousal regions. 

Features derived using these windows were 

reduced to 38 by using various feature selection 

methods. A cross-validated Random Forest(RF) was 

used for the evaluation.  
The training data was processed with a 20-second 

sliding window and a 1 second resolution. Windows 

were labelled according to their temporal location in 

the data. This was used to train three separate RFs on 

different parts of the data, which provided a 

probability emission model. The probability values 

used in a Hidden Markov Model and established the 

most probable path with the Viterbi algorithm. 

Probability values were aggregated based on the 

Viterbi path, then smoothed and resampled to match 

the original sample rate. This method achieved an 

0.29 score of AUPRC. 

 

 

1.  Introduction 

 
Everyone knows that healthy sleep is paramount to 

our well-being, but several things can interfere with 

one’s ability to fall or stay asleep. Some of the more 

well-studied and important sleep disorders are 

breathing-related. These are described by abnormal 

breathing and have an enormous influence on sleep 

quality [1][2].  

According to the current classification, there are 

four major types of sleep-related breathing disorders; 

these being central apnea syndromes, obstructive 

apnea syndromes, hypoventilation/ hypoxemia 

syndromes  

 

 

associated with sleep and undefined/non-specific 

sleep disorders [2]. 

Respiratory effort-related arousals (RERAs) are 

also responsible for abnormal sleep. It is a breathing 

disorder characterized by an obstructive upper airway 

airflow reduction (which does not meet the criteria of 

apnea or hypopnea), associated with an increased 

respiratory effort that resolves itself with the 

appearance of arousals. Diagnostic criteria are [3]: 

1. A series of respiratory cycles of increasing/ 

decreasing effort or flattening, recorded by 

nasal manometry and leading to an arousal 

that cannot be defined as apnea or hypopnea. 

2. Duration ≥ 10 sec. 

  “Arousals are a main part of breathing-related 

sleep issues and they are defined as a sudden change 

of EEG frequency consisting of alpha and theta 

activity or waveforms with frequency greater than 16 

Hz (but not sleep spindles) and a duration of 3-15 

seconds [3].” 

Sleep arousal detection was carried out by 

researchers [4][5], with a relatively small patient size 

and without distinguishing between 

apneas/hypopneas and RERAs. 

The detection of arousals is a cornerstone of sleep 

study evaluations. As arousals are mostly caused by 

sleep-related breathing disorders, correct 

classifications could lead to crucial diagnoses. 

Arousals also have detrimental effects on human 

sleep cycles. Assessing the correct Respiratory 

Disturbance Index would mean the accurate detection 

of the number of RERAs, apnea, hypopneas. This 

index is an excellent indicator of sleep quality and 

also a great tool for medical personnel to do accurate 

evaluations on the polysomnographic data of patients 

[3]. 

 

 2.  Materials and methods 

 

 2.1  Dataset 
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The dataset were contributed by the Massachusetts 

General Hospital’s (MGH) Computational Clinical 

Neurophysiology Laboratory (CCNL), and the 

Clinical Data Animation Laboratory (CDAC). The 

dataset includes 1,985 subjects who were monitored 

at an MGH sleep laboratory for the diagnosis of sleep 

disorders. The data was divided into balanced training 

(n = 994), and test sets (n = 989) [7]. 

This included signals like oxygen saturation, 

chin/chest/abdomen movement, airflow, ECG, EOG 

and  EEG [7]. 

More information on the data used by this study 

can be found on the challenge website [7]. 

 

 2.2  Data processing 
 

The first step of the processing was to look at all 

the signal channels and determine any factor that 

could distort signals in some way. In our study, 

Matlab was used as a programming tool.  

Looking at a spectrogram using a short-time 

Fourier transform, noise from certain frequencies 

were identified. The most important was the 60Hz 

utility frequency of the alternating mains current. A 

second order digital IIR notch filter was used to filter 

this out. Every channel excluding oxygen saturation 

contained the 60Hz noise. During the final data 

processing all signals were resampled at 60Hz, which 

effectively meant a low-pass 30Hz filter. 

Sensors dropping or giving false measurements 

were also a factor that was considered. Parts where all 

the signals were zero and where strangely low or high 

spikes were present, but relative to the size of the data 

set these could be disregarded.  

The size of the annotated training data was 135 

gigabytes, so in order to be able to work with it, 

segmentation was necessary. 20-second-long intervals 

were chosen in such a way that their center point was 

aligned with the start of an arousal. This was 

motivated by other studies on related topics and the 

fact that arousals are described by a sudden change in 

certain physiological signals. These 20-second-long 

windows reflected that change. For a given subject’s 

recording the same amount of windows were 

determined from non-RERA, non-arousal regions. 

This process was done with every fifth subject. The 

segments were assembled, hence we got a smaller 

data set containing the same amount of RERA and 

non-RERA data. This was suitable for determining 

valuable features. 

The ratio of the 10 second part before a RERA, 

and the 10 second segment at the beginning of a 

RERA was enough to show what changes and how, 

when these arousals occur. Also it was helpful to look 

at not only the change, but the standalone features as 

well. 

 2.3  Feature extraction 

 
Using all features that looked even slightly 

promising we ended up with 223 overall. A number 

of attribute selection methods were used to reduce 

their number. A WEKA[8] implementation of these 

methods was used with default settings. The 

performance of each individual feature selection was 

evaluated using a Random Decision Forest. 

 

Table 1. Feature selection results 

 

Attribute 

selection 

Number 

of attributes 

ROC-

AUC 

none 223 0,812 

CFS 22 0,806 

Correlation 30 0,762 

Gain Ratio 31 0,799 

Information 

Gain 

31 0,802 

One Rule 31 0,801 

Union of all 68 0,814 

Reduced 

union of all 

38 0,810 

 

The combination of these evaluation methods 

reduced the number of attributes to 38. This contained 

at least one feature for every data channel available. 

 

Table 2. Feature set 

 

Standalone 

features 

Ratio of two 

consecutive 

10 second 

segments 

Ratio of a 

3 second 

segment 

and a 

preceding 

10 second 

segment 
Breathing-

related: 

-Mean of the 

absolute value of 

chest and 

abdomen. 

-Standard 

deviation of chest 

and abdomen. 

-Max-min of 

abdomen. 

-Movement of 

abdomen and 

chest. 

Breathing-

related: 

-Mean of the 

absolute value 

of chest, chin 

and airflow. 

-Standard 

deviation of 

abdomen. 

-Max-min of 

abdomen. 

-Convolution of 

airflow and 

chest/abdomen 

movement 

Breathing-

related: 
none 
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Cardiovascular: 
none 

Cardiovascular

: 

-Mean of Sao2. 

-Heart rate. 

Cardiovasc

ular: none 

Neural: 

-Standard 

deviation of 

occipital EEG 

and frontal EEG. 

-EEG Delta band: 

central Hjorth 

mobility and 

energy, occipital 

Hjorth activity 

and complexity. 

-EEG Theta 

band: central and 

occipital energy. 

-EEG Alpha 

band: occipital 

energy and 

Hjorth mobility. 

-EEG Beta band: 

central energy 

and Hjorth 

mobility, 

occipital Hjorth 

activity 

Neural: none  Neural: 

-EEG Delta 

band: 

occipital 

energy. 

-EEG Theta 

band: 

occipital 

energy of 

both 

(O2,O1) 

signals. 

   

 Using these features the training data was processed 

with a 20-second sliding window and a 1-second 

resolution. The data was labelled according to the 

following rules: 

 

Table 3. Data labelling 

 

No 

arousal 

Beginning 

of RERA 

(first 2 

seconds) 

Middle 

of 

RERA 

Ending 

of 

RERA 

(last 2 

seconds) 

Apnea/ 

hypopne

a arousal 

1 2 3 4 -1 

 

In the training process, segments marked with -1 

were not included. Random Decision Forests (RFs) 

are an ensemble learning method for classification 

and regression that operate by constructing a 

multitude of decision trees during training and 

outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the 

individual trees. RFs forests correct for the tendency 

of decision trees overfitting the training set. 

Significant improvements in classification accuracy 

resulted from growing an ensemble of trees and using 

their individual votes to find the most likely class. In 

order to grow these ensembles, often random vectors 

are generated that control the growth of each 

individual tree. An example is bagging, where to 

grow each tree a random selection is made from the 

samples in the training set [9][10]. 

Three separate binary RFs were trained on 

different parts of the data. The first was trained on 

labels 1 and 2, the second on 1 and 3 and the last RF 

was trained using data annotated by labels 1 and 4. 

Because of the highly unbalanced number of labels, 

RFs tend to under predict classes that appeared less 

during the training process. This could be solved by 

setting a uniform prior distribution or by resampling 

data used for training. Undersampling data from label 

1 produced a model that proved to be the best and 

least complex. 

 

2.4 Sequence analysis 

 
A Markov process is a process that is capable of 

being in more than one state and it can make 

transitions among these states. In a Markov process 

the available states and transition probabilities depend 

only upon what state the system is currently in. A 

Markov Chain is a statistical model of a system that 

moves sequentially from one state to another. The 

transition probabilities from one state to another are 

dependent only on the current state (not on previous 

states). An alternative representation that is 

sometimes used for Markov chains does not rely on a 

start or end state, instead it represents the distribution 

over initial states and only accepts states explicitly. 

Extending this idea to a new model which is a doubly 

embedded stochastic process with an underlying 

process that is not observable (hidden), it is only 

observable via another set of stochastic processes that 

produce a set of observations. It is called a Hidden 

Markov Model (HMM).  

The transition probabilities were assigned by 

looking at all the unique state (label) changes in the 

dataset and dividing them by the total state changes of 

that label [11]. 

Using the probability scores of the RF and the state 

transition probability matrix the most likely path was 

calculated by the Viterbi algorithm(VA). VA is a 

recursive optimal solution to the problem of decoding 

the state sequence of a discrete-time finite-state 

Markov process [12]. After finding the most likely 

path of state sequences; the probability of a RERA 

event at a certain time frame was calculated by adding 

up the probability values of states 2,3,4 for areas 

where the most likely state was either 2,3,4. For 

segments that were marked by VA with 1 (no 

arousal), the probability state 3 was assigned.  

This is reasonable as all states except 1 represent 

some part of the arousal. This proved to be a better 

method than a trivial binary classification and Viterbi 
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decoding. The probability values were smoothed with 

a moving average, which is a low-pass filter with a 

window length set to 24 seconds. This eliminated 

some noise in the time series prediction. Then the 

results were resampled with linear interpolation to 

match the original (200Hz) sample rate.  

 

3.  Results 
 

Our final algorithm was only graded for its binary 

classification performance by challenge organizers on 

target arousal and non-arousal regions, measured by 

the area under the precision-recall curve (AUPRC). 

This is the gross AUPRC (i.e., for each possible value 

of the precision and recall are calculated for the entire 

test database), which is not the same as averaging the 

AUPRC for each record. The running time was 10% 

of the given quota. 

The AUPRC for our final model was 0.29. 

 

4.  Conclusions 

 
The vast amount of the training data set provided a 

perfect opportunity to find a large array of predictive 

features, compare the performance of machine 

learning methods and discover new connections 

between breathing-related sleep disorders and 

partially hidden physiological attributes.  

During the study, due to time and hardware 

restrictions only 20-35% of the total information was 

processed.  

Difficulties arose because of these limitation, the 

imperfectly labelled data and the interrater reliability 

for sleep scoring, which is 82% for the AASM 

standard used by this study [13], and this tells us that 

there still is no absolute agreement for sleep scoring 

standards. 

RF proved to be helpful in showing how good a 

given feature set is and how reliable a learning model 

is. 

However, for sequential data like a 

polysomnogram it does not have the means to enforce 

consecutive data to follow certain rules. 

The Hidden Markov Model provided these rules 

and the Viterbi algorithm found the most likely 

sequence called the Viterbi path. Using a special 

aggregation on this path, better results were obtained 

than the default ones. Together these methods were 

capable of detecting RERAs and other arousals with 

an acceptable accuracy and could be beneficial in 

many similar tasks. 
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