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Abstract

This paper discusses a novel approach used for classi-
fication of phonocardiogram (PCG) excerpts into normal
and abnormal classes as a part of Physionet 2016 chal-
lenge [10]. The dataset used for the competition com-
prises of cardiac abnormalities such as mitral valve pro-
lapse (MVP), benign murmurs, aortic diseases, coronary
artery disease, miscellaneous pathological conditions etc.
[3], We present the approach used for classification from
a general machine learning application standpoint, giv-
ing details on feature extraction, type of classifiers used
comparing their performances individually and in combi-
nation. We propose a technique which leverages previous
research on feature extraction with a novel approach to
modeling temporal dynamics of the signal using Markov
chain analysis [7, 9]. These newly introduced Markov fea-
tures along with other statistical and frequency domain
features, trained over an ensemble of artificial neural net-
works and gradient boosting trees, with bagging, gave us
an accuracy of 82% on the validation dataset provided in
the competition and was consistent with the test data with
the best result of 78%.

1. Introduction

This work describes a novel approach designed for Phy-
sionet 2016 Challenge Classification of Normal/Abnormal
Heart Sound Recordings. The objective here is to clas-
sify Phonocardiogram (PCG) recordings into normal and
abnormal categories. A comprehensive detail on the
database, explaining how the PCG signals were collected
and the type of abnormalities found are discussed in the
paper mentioned in the reference section [3].

Usually, statistical features such as means, standard de-
viations of systole, diastole intervals, and signal complex-
ity features are used as features for classification and these
are enough to give decent results. But these features fail to
completely capture the temporal information of the signal.

This could be very important since it represents how each
heart beat changes over time.

To capture the temporal dynamics, we take PCG signal
beat by beat and assign each beat a symbol/category based
on different thresholds set on features (ratios of systole
intervals to RR interval, diastole intervals to RR interval,
beat energy, the power of frequency component above 200
Hz). Thus, a sequence of symbols for the entire signal is
obtained. We then extract features out of this sequence for
classification. One of the ways we employed is to create a
Markov chain with symbols being the states of the matrix
and the resulting transition probabilities are used as fea-
tures. These features along with marginal probabilities of
states and rest of the acoustic features like sample entropy,
instantaneous frequency analysis etc. are used to train an
ensemble/bag of 4 class boosted tree classifiers [8, 13] and
4 artificial neural networks [12].

2. Preprocessing

The training data consists of PCG signals of varying
length, anywhere between 5s to just over 120s all sampled
at 2000 Hz. For training, all the signals were re-sampled to
1000 Hz and features were extracted. Since PCG record-
ings were collected under uncontrolled environments, they
were corrupted by various noise sources. Hence signals
were filtered with a band-pass Butterworth filter of the fre-
quency range, 25 Hz to 400 Hz to remove high-frequency
noise as well as artifacts such as baseline wandering. The
signal spikes were then removed using Schmidt spike re-
moval technique [4] and the signal was normalized to zero
mean and unit variance. Reference annotations for four
heart sound states (S1, systole, S2, diastole), for each heart
beat, were then obtained for the pre-processed signals us-
ing Springer’s segmentation algorithm [5] which is a state
of the art solution for heart beat segmentation.



3. Feature Extraction

The time duration generated by segmentation algorithm
for the four heart sound states: S1, systole, S2, diastole
were used to get few selected, typical statistical features
such as mean and standard deviations of each state lengths,
powers, ratio of each state length to RR interval, ratio of
systole to diastole intervals, ratio of amplitude of systole
to diastole, number of zero crossings, etc. This comprised
a total of 38 features.

From frequency domain analysis, FFT statistics, Au-
toregressive Moving-Average (ARMA) features [1], Mel-
frequency Ceptral Coefficients (MFCC) features [2], sam-
ple entropy [6], music features [1], octave band features [1]
etc. were extracted and it comprised a total of 102 features.

The above features even though proved to be statistically
significant in classification don’t really capture the tem-
poral dynamics of the signal, which is to say, how a beat
differed from other beats in terms of energy of the beat,
energy of states of individual beats, duration of beat etc,
Hence a Markov chain analysis [7,9] was done to capture
this, which we found to be useful to improve the accuracy
of the results.

3.1. Markov Chain Analysis

We noticed that when we do beat by beat analysis, there
is a significant variance in the following features, namely:
the energy of beat, power in the region above 200 Hz, sys-
tole to RR ratio, diastole to RR ratio. The first 2 of the 4
features account for variation in amplitude component of
the signal, and the remaining 2 account for the time com-
ponent variations.

First, we list out the values of these 4 features for all the
beats in all the recordings, then for each of the features, 2
thresholds were selected, which divides the training data at
33 percentile and 66 percentile points rendering them into
3 parts [7,9]. Thus a total of 8 thresholds for 4 features in
combination, give us 12 different regions in 4-dimensional
space of 4 features. These 12 regions are used as 12 states
of a Markov chain.

For each signal, each beat is classified into one of the
12 states, giving a sequence of states, labeled A through
L, an example of which is given in Figure 1. A first or-
der transition probability matrix is constructed for the se-
quence obtained, and these transition probabilities along
with marginal probabilities are used as features making
a total of 156 features, of which 40 were selected based
on feature importance analysis using XGBoost [8, 13] and
some manually curated methods.

Finally combining all features together we obtained a
total of 180 features, of which 72 features were eliminated
based on the feature importance obtained through random
Forest and XGBoost [8, 13] feature importance analysis,

giving a final total of 108 features. Approximate, nor-
malized feature importance of individual feature types are
summarized in the Table 1.
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Figure 1. Sequence of states generated in Markov analysis
of PCG.

Table 1. Features extracted and importance

Feature Importance
ARMA 14%
MFCC 12%
FFT Statistics 8%
Music features 9%
Octave band features 12%
Markov features 12%
Rest of the features 33%

4. Training

Training process briefly describes training data used,
way it is stratified, analysis of feature space and classifi-
cation techniques employed.

4.1. Training Data

Training data [3] consists of 3153 recordings of which
242, labeled extremely noisy to be correctly classified are
eliminated as no special method is employed to detect such
a noise, some of which don’t even contain PCG signals.
296 of the rest that is marked for validation by Physionet
are taken as a validation set and are removed from the
training set. Thus, the training data comprises of 2615
recordings, containing 454 abnormal recordings (class 1)



and 2161 normal recordings (class 0), roughly a class ra-
tio of 1:4, and the validation set comprises of 296 samples
with a class ratio of 1:1. Test data is not revealed to the
participants.

4.2. Experimentation

The normalized training data was further analyzed using
Linear Discriminant Analysis (LDA) [14], Principal Com-
ponent Analysis (PCA) [14] and t-Distributed Stochastic
Neighbor Embedding (t-SNE) [15] to get a visual represen-
tation of the training to aid in selection of the classifier. As
you can clearly see from the Figure 2, even though, classes
seem to have fairly well separated, a simple linear clas-
sifier is highly unlikely to work. This is because classes
don’t seem to have a linear boundary, hence needing to go
for non-linear classifiers with higher VC-dimensions.
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Figure 2. 1-D plot of LDA, 2-D plots of PCA and t-SNE
respectively.

In order to span through multiple hypothesis spaces, We
tried quite a few classifiers, such as, XGBOOST [8, 13]

which is an AdaBoost based gradient boosting tree classi-
fier, single hidden layer artificial neural networks (ANN)
with 10 neurons (Keras [12]), Support Vector Machines
(SVM) with linear kernel (sklearn [14]) and random forest
(sklearn [14]). Since the training data is highly class im-
balanced, we train with sample weights of 0.8 for class 1
and 0.2 for class 0 samples. The results of which on vali-
dation data are summarized in Table 2.

The final model is a weighted ensemble of 4 XGBOOST
and 4 ANN classifiers trained with feature bagging, manu-
ally tuning the parameters to get optimized ones. Figure 3
gives flow chart of the methodology used for classification.
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Figure 3. Algorithm flow.

Table 2. Classifiers and accuracy.

Classifier validation accuracy
ANN 76.2%
Gradient Boosting 78.4%
SVM 71.1%
Random Forest 73%

S. Results

The scoring function used for the competition treats ex-
tremely noisy signal to be a separate class, but since our



analysis doesn’t do any such special handling for noise
classification, the validation score will be reported as per
the below scoring function.

Sensitivity, Se = 100=TP
YT TP L FP
100 « TN

ficit _
Speci ficity, Sp TN T EFN

where TP, TN, FP, FN stand for true positive, true negative,
false positive and false negative respectively.

Se + Sp
2
The overall results are summarized in Table 3.

score =

Table 3. Final results: Val Set stands for validation set and
Feats stands for features

Data Se Sp Score
Val Set(with Markov Feats) 79.2% | 84.3% | 81.75%
Val Set(without Markov Feats) | 72.9% | 80.9% | 76.3%
Test Set 71.6% | 82.7% | 77.2%
6. Conclusion

The experimentation with newly introduced Markov
Features proves to be successful, improving the result by as
much as 5% on the validation data. The validation scores
are consistent with the test scores, hence over-fitting is
minimal. The overall accuracy could be improved with
better insight into the cause of abnormalities, type of ab-
normalities, and even if an abnormality is observed, know-
ing what region of PCG is subjected the same would be
helpful. Moreover, noise, impossible to separate in the
frequency domain, makes it very hard to classify, hence
should be dealt in a better way.

The link for code location is mentioned in Reference
[11].
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