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Abstract

We describe the development of an algorithm for
the automatic classification of heart sound phonocar-
diogram waveforms as normal, abnormal or uncer-
tain. Our approach consists of three major compo-
nents: 1) Heart sound segmentation, 2) Transformation
of one-dimensional waveforms into two-dimensional time-
frequency heat map representations using Mel-frequency
cepstral coefficients and 3) Classification of MFCC heat
maps using deep convolutional neural networks. We ap-
plied the above approach to produce submissions for the
2016 PhysioNet Computing in Cardiology Challenge. We
present results from the challenge, as well as describe in
detail the resulting neural network architecture produced
and design decisions made.

1. Introduction

The goal of the 2016 PhysioNet Computing in Cardiol-
ogy Challenge was to accurately classify normal and ab-
normal heart sounds from phonocardiogram (PCG) wave-
forms. A particular aim was to identify from a single short
recording whether a subject should be referred on for ex-
pert diagnosis. Accurate and robust algorithms were re-
quired that could deal with heart sounds that exhibit very
poor signal quality.

The challenge training set consisted of 3,240 heart
sound recordings, lasting from 5 seconds to just over 120
seconds. Recordings were collected from nine different lo-
cations on the body (including aortic area, pulmonic area,
tricuspid area and mitral area, among others). Recordings
from healthy subjects were labeled as normal. Recordings
from subjects with a confirmed cardiac diagnosis were la-
beled as abnormal. Abnormal recordings were collected
from patients who suffered from a variety of illnesses, in-
cluding heart valve defects (mitral valve prolapse, mitral
regurgitation, aortic stenosis, valvular surgery) and coro-
nary artery disease. An in depth description of the chal-
lenge and the dataset is provided in [1], as well as a thor-
ough review of the field of cardiac auscultation.

We present an algorithm that computes heat maps of

the time-frequency distribution of signal energy and uses
a deep convolutional neural network to automatically clas-
sify normal versus abnormal heart sound recordings. Lo-
gistic regression hidden semi-Markov model-based heart
sound segmentation is first performed on the PCG wave-
form. Spectrograms (energy maps) consisting of 6 cep-
stral coefficients that capture Mel-frequencies varying over
time are derived for overlapping sliding windows of three-
second duration, beginning at the first heart sound, S1. A
deep convolutional neural network consisting of two al-
ternating convolution and max pooling layers is trained
to perform automatic feature extraction. A final multi-
layer perceptron, consisting of two fully connected layers,
distinguishes between normal and abnormal spectrograms.
Heart sound recordings of variable length are dealt with by
computing an ensemble of logit scores for all overlapping
three-second segments contained within a recording and
maximizing the average scores computed for all classes.

2. Approach

Our approach consists of three major components:
1. Segmentation of the PCG signal into the fundamental
heart sounds.
2. MFCC Transformation of the original PCG signal
into a time-frequency representation of the distribution of
signal energy.
3. Training and classification of MFCC heat maps using
deep convolutional neural networks.

Each component is described in detail below.

2.1. Segmentation

We first segment each PCG waveform into the funda-
mental heart sounds (S1, Systole, S2 and Diastole) us-
ing Springer’s segmentation algorithm [2]. Fig. 1. pro-
vides an illustration of the segmentation process and de-
picts how fundamental heart sound segmentation corre-
sponds to peak alignment in the corresponding ECG sig-
nal. Springer’s algorithm uses a logistic regression hidden
semi-Markov model to predict the most likely sequence of
states by incorporating information about expected heart



sound state durations. The Springer segmentation algo-
rithm was provided by the challenge organizers and was
used as is. For further details regarding the algorithm we
refer the reader to [2].

Figure 1. Illustration of fundamental heart sound segmen-
tation in both PCG and ECG. Image source: [1].

Within our approach, we do not make use of all the re-
sulting segmentation information. Rather, we chose to pro-
cess and analyze 3-second heart sound segments. Segmen-
tation was used to ensure that each 3-second heart sound
segment began at S1. This was performed to ensure se-
quences were aligned during classification. Overlapping
sequences were used in eventual classification as this led
to improved accuracies in our initial experimentation.

2.2. MFCC

After segmentation, each 3-second segment is trans-
formed from a one-dimensional PCG audio signal into a
two-dimensional time-frequency representation. We chose
to represent the data using Mel Frequency Cepstral Coef-
ficents [3]. MFCCs capture features from audio data that
more closely resembles how human beings perceive loud-
ness and pitch. MFCC are commonly used as a feature
type in automatic speech recognition [4]. Previous ap-
proaches to cardiac auscultation have also utilized MFCCs
[5].

To calculate MFCC values the following five steps are
used:
1. Run overlapping sliding windows over the input audio
data (we used a window length of 25ms and a step size of
10ms).
2. Compute the Fourier transform over each window
3. Apply a Mel filterbank and sum energies within each
filter
4. Compute the logarithm of the filterbank energies
5. Perform a discrete cosine transform on the log filter-
bank energies

The above procedure produces 12 MFCC values per

sliding window. The total energy per sliding window is
also included as a feature. This results in 13 MFCC feature
values for each sliding window. Appending these features
together results in a time-frequency representation that can
be visualized as a heat map (see Fig. 2). In total each heat
map consists of 300 time frames represented on the x-axis,
and 13 MFCC filterbanks represented on the y-axis.

Figure 2. MFCC heat map visualization of a 3-second
segment of heart sound data. Time is represented on the x-
axis and filterbank frequencies represented on the y-axis.
Energy information is represented by color in the spectro-
gram.

The number of MFCC features to use during classifica-
tion was treated as a hyper-parameter. Based on perfor-
mance during initial experimentation, the first 6 features
were selected.

2.3. Deep Convolutional Neural Networks

The result of transforming the original one-dimensional
time-series into a two-dimensional time-frequency repre-
sentation is that now each 3-second instance of heart sound
data can be processed as an image, where energy values
over time can be visualized as a heat map. As such, we
can make use of the latest advancements that have been
made using deep convolutional neural networks (CNN) for
image analysis.

2.3.1. Network Architecture

Fig. 3. depicts the network architecture of a convolu-
tional neural network that accepts as input a single channel
6x300 MFCC heat map and outputs a binary classification,
predicting whether the input segment represents a normal
or abnormal heart sound. A standard architecture is used
consisting of two convolutional layers, each followed by a
max-pooling layer, followed by two fully connected layers
before final classification.

The first convolutional layer learns 64 2x20 kernels, us-
ing same-padding. This is followed by applying a 1x20
max-pooling filter, using a horizontal stride of 5, which
has the effect of reducing each of the 64 feature maps to a
dimension of 6x60. A second convolutional layer applies
64 2x10 kernels over the previous layer, once again using
same padding. This is again followed by a max-pooling
operation using a filter size of 1x4 and a stride of 2, further
reducing each feature map to a dimension of 6x30. At this
stage in the architecture a flattening operation is applied
that unrolls each of the 64 6x30 feature maps into a sin-
gle dimensional vector of size 11,520. This feature vector



Figure 3. Convolutional neural network architecture for predicting normal versus abnormal heart sounds using MFCC heat
maps as input. Note that the input heat map image is rotated due to space considerations.

is fed into a first fully connected layer consisting of 1024
hidden units, followed by a second layer of 512 hidden
units and finally a binary classification output.

Decisions about the number of filters to apply and their
sizes, as well as how many layers and their types to include
in the network were made by a combination of initial man-
ual exploration by the authors, followed by employing a
random search over a limited range of network architec-
ture parameters.

3. Network Training

A standard softmax cross entropy loss function was used
to optimize the network during training. L2 regulariza-
tion was computed for each of the fully connected lay-
ers’ weight and bias matrices and applied to the even-
tual loss function. Dropout was applied within both fully
connected layers. Table 1 shows the values of hyper-
parameters chosen by performing a random search through
parameter space, as well as a list of other network training
choices, including weight updates and use of regulariza-
tion. Adam optimization [6] was used to perform weight
updates. Models were trained on a single NVIDIA GPU
with between 4 – 6 GB of memory. A mini-batch size of
256 was selected to satisfy the memory constraints of the
GPU.

3.1. Train, validate and test data split

From the original 3240 PCG waveforms supplied by the
challenge organizers (training sets a – f ), 301 instances
were removed (validation set) and the remaining instances
were used to train initial models. Models were trained
on the overlapping 3-second MFCC segments extracted
from the remaining 2939 PCG waveforms. This resulted

Hyper-parameters Value
Learning rate 0.00015822
Beta 0.000076253698849
Dropout 0.85565561
Network parameters Value
Regularization Type L2

Batch Size 256
Weight Update Adam Optimization

Table 1. Listing of hyper-parameters and selected network
parameters. Hyper-parameters were learned over the net-
work architecture described in Section 2.3.1, using random
search over a restricted parameter space.

in approximately 90,000 MFCC heat maps, which were
split into a training (∼ 75, 000 instances) and validation
set (∼ 15, 000 instances). This training and validation
set was unbalanced, consisting of approximately 80% nor-
mal segments and 20% abnormal segments. Training was
performed on the unbalanced dataset and no attempt was
made to compensate for this class imbalance (for example
by stratifying the training dataset).

3.2. Full instance classification

Given that each model was trained on 3-second MFCC
heat map segments, it was necessary to stitch together a
collection of predictions to classify a single full instance.
The simple strategy of averaging each class’s prediction
probability was employed and the class with the greatest
probability was selected as the final prediction.

The authors used the 301 instances, that were initially
removed, as a local held-out test-set to evaluate a trained
model’s predictions on full instances, before making a sub-



mission to the PhysioNet challenge server. The 301 lo-
cal held-out test-set was a balanced dataset, consisting of
approximately 50% normal and 50% abnormal instances.
Final model evaluation was performed on the challenge
server using a completely separate unseen test set. Only
a limited number of submissions to the challenge server
were allowed to avoid overfitting.

4. Model submissions (Phase I & II)

Model performance was initially evaluated by the au-
thors using the local held-out test-set described above be-
fore making a final submission to the PhysioNet challenge
server. Models that improved the performance on the local
held-out test-set were selected for submission to the chal-
lenge server. Before submitting a model for evaluation on
the challenge server, retraining of the model occurred us-
ing the entire dataset consisting of 3240 PCG waveforms.

4.1. Phase I (Unofficial)

For Phase I submissions, a binary classification model
(as described above) was submitted to the challenge server.
Training-set f , was also not yet made publicly available, so
the number of instances used to train the model was fewer.

4.2. Phase II (Official)

During Phase II, updates were made to the datasets pro-
vided by the challenge organizers. These updates included
the addition of training-set f , as well as the introduction of
a signal quality indicator. Challenge organizers also made
available hand corrections to the output of Springer’s heart
sound segmentation algorithm for PCG waveforms where
signal quality was considered good.

Models submitted during Phase II were updated and
trained as multiclass prediction models, where instances
with bad signal quality were given the class label of uncer-
tain. Where signal quality was good, hand corrected seg-
mentation was used to identify S1 heart sounds, whereas if
signal quality was bad, heart sound segmentation was the
same as in Phase I.

5. Results

Results for our top scoring submissions made to the
PhysioNet challenge server for both Phase I and Phase II
are depicted in Table 2. Note that the scoring functions,
used for evaluation, differed between challenge phases. In
particular, the way that uncertain class predictions were
evaluated was altered. We refer the reader to [1] for fur-
ther details about the exact scoring mechanism used.

Phase I
Sensitivity 75%
Specificity 100%

Overall 88%
Phase II

Sensitivity 76.5%
Specificity 93.1%

Overall 84.8%

Table 2. PhysioNet challenge server sensitivity and speci-
ficity results for Phase I and Phase II of the 2016 Comput-
ing in Cardiology Challenge.

6. Conclusions

These results suggest that convolutional neural networks
are able to automatically extract useful features from Mel-
frequency cepstral coefficient heat maps to distinguish be-
tween normal and abnormal heart sounds from noisy data.
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